The International Conference on Information and Digital Technologies 2021

Improved method of selecting data in a
nonrelational database

Michal Kvet

Roman Ceresnak
Faculty of Management Science and
Informatics
University of Zilina
Zilina, Slovakia
roman.ceresnak@fri.uniza.sk

Abstract— People surround themselves with data in many
ways, which evokes the need for correct ways of storing the data.
Nowadays, the trend tends to lean in favor of data storing in
nonrelational (or NoSQL) databases. These databases are used
in various user applications, which need a huge volume of the
data highly accessible and do not require big data consistency.
The problem of the data growth and its storing in the
nonrelational databases results in the decreasing efficiency of
searching in data. In the paper, we present use of very popular
in-memory database in order to help us with this lack of
efficiency of the data searching. This paper examines the data
searching in applications hosted by Amazon cloud service while
using nonrelational database DynamoDB. We develop new
procedures to provide faster response to user and to obtain the
data using nonrelational database DynamoDB. These
procedures provide the queried data and subsequently, transfer
them into the memory. The given procedures are based on two
methods. The first method is a recognition of values, the user
refers to and the provision of this data to the in-memory
database. The second method is related to the automatic storing
of the data transferred to the in-memory database. We perform
number of experiments, which are describing a limitation of
efficiency/inefficiency from a perspective computational time.

Keywords—Data Searching, NoSQL databases, in-memory
databases, DynamoDB

I. INTRODUCTION

The growth of population and amount of produced data
caused, that many conventionally used procedures and
systems, like traditional databases, started gradually losing
their efficiency. In contrast with relational databases [2],
NoSQL databases process and manage the big data,
characterized by 3V (volume, variety, velocity) [3]. NoSQL
databases are critical in support of various applications, which
need various levels of performance consistency, availability,
and scalability [4]. Social media such as Twitter and Facebook
[5] generate exabytes of the data daily, which exceed
processing capabilities of relational databases. These
applications demand high performance, but they do not have
to demand strong consistency.

It is impossible to achieve the same efficiency of searching
in a large amount of the data while working with the
nonrelational and relational databases. Regarding the
searching in the nonrelational databases, the data, which do
not have to meet the strict structural demands of system
(RDMBS), are stored, because the data for the searching can
be texted, semi-structured or unstructured. A search engine
database is created to help the users in fast finding of the
information they need in a highly qualified and cost-effective
way. These databases are optimized for the use of keywords
and usually offer specialized methods such as full-text

Faculty of Management Science and
Informatics
University of Zilina
Zilina, Slovakia
michal.kvet@fri.uniza.sk

Karol Matiasko
Faculty of Management Science and
Informatics
University of Zilina
Zilina, Slovakia
karol.matiasko@fri.uniza.sk

searching or searching with the use of complicated
expressions of various types.

Search engine database consists of two main parts. The
first part is adding a search engine database index to the data.
When the user queries for data, relevant results are quickly
returned with the help of the search engine database index.
This fast and responsive way of data searching is possible
since instead of direct searching for queried text, these
databases search for relevant index in the database. This can
be thought of as an equivalent to looking for page number
related to the term in book index, in contrast to searching for
individual words on every page in the book. This type of index
is called an inverted index because it transfers the data
structure-oriented on a page to the data structure oriented at
the keywords.

Second part of the search engine database is the data
searching can be made more efficient with the use of in-
memory databases. The in-memory database (IMDB) is a
computer system, which stores and searches the data records
situated in the main memory of computer e.g., in RAM
memory. IDMB is an advantageous approach to the data
storing since traditional databases work with a data access
delay as a result of storing data on medias with higher time of
access such as hard discs, SSDs and so on. This means, that
IDMB is useful when fast reading and recording of data is
crucial.

Most of IMDB implementation preserve data in the RAM.
Some implementations use IDMB with the combination of
disk part of the system, but RAM is still primary storing
medium. Some IDMBs also store the data on disk as a
preventive measure to minimalize the risk of the data loss,
since RAM is volatile e.g., the data is lost when a computer
loses electric energy.

The majority of IDMB also prevents the data loss in
chosen data center (property known as “high availability”)
preserving the copies (technically called replicas) of all the
data records on several computers in a cluster. This data
redundancy secures, that when any kind of error makes
whichever computer in the network not available, no data
record could be lost. Among the most popular in-memory
databases, which use query languages for data searching,
belong databases such as Redis, Memcached and similar
products. Artificial intelligence can be used in order to help us
with the purpose of transfer of the data situated in the
nonrelational database DynamoDB.

The problem related to the data transfer from the
conventional disk-based database to the in-memory database
is known as velocity of the data searching and the transfer
efficiency. Artificial intelligence was used for these purposes,
which secures this transfer and so it also makes the data

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

65



Improved method of selecting data in a nonrelational database

searching more effective. The main objectives of this paper
are as follow:

e  We create a new procedure for processing the data in
the memory,
e  We reduce the time needed for the record searching
in the nonrelational databases,
e  We define the methods of automatic adjustment of
the data growth to the size of in-memory database.
The rest of the paper is structured as follows. “State of the
art” section examines the work related to objective of
presented paper. Part III presents our proposed solution -
designed searching model and the characteristics of this
model. “The data transfer” and “The index creation” parts
describe the performance of the operation in DynamoDB.
“Experiments” part describes performed experimental testing
and subsequently their results.

II. STATE OF THE ART

A comparison between relational data models and
nonrelational (NoSQL) data models was already stated in
various papers. For example, comparisons between these two
types of database were focused on the times needed to
perform basic database operations such as data selection, data
insert, data update, and deletion of data [1].

Several statistics point out the fact the most common
operation, which is demanded in the relational and
nonrelational database, is data selection operation [1, 2].
Number of authors presented in their papers [3], that the time
needed to get the data in the nonrelational database is
significantly higher as the time needed to get the same data in
the relational database. Computational time of operations is
crucial not only in database systems, but all problems related
to the computer science [4, 5], hence need for optimization of
conventional approaches. As a way to accelerate or improve
the time needed to get the data from the nonrelational
database, it is possible to store the data to buffer memory and
by this reduce repeated searching in the nonrelational
database. With the use of this method not only computational
time is reduced, but also number of accesses to the database
is lowered [6].

The authors performed various comparisons between in-
memory databases such as Redis, Memcached, and
nonrelational databases Mongo, Casandra, and H2 [7]. One
of the main findings of these works is the verification of data
update and deleting of the data with its increasing amount.
During our research related to the topic of the paper, we
noticed, that papers focus on problem-solving in the context
of increasing amount of the data.

In the authors created a module by using the library
Lontar, which sends the data to the relational database with
the use of Hibernate as a framework and a relational mapper,
in the case of user’s demand. Subsequently, Hibernate
accesses the MySQL database and maps the relational data to
object-oriented [8], and then it sends the data to the
nonrelational database. The searching then works with the
help of the mapper, so Lontar is able to read the data in a
relationship. According to the authors, searching for data in
chosen data files resulted in better times for nonrelational
database MongoDB than for relational database MySQL.
However, in certain situations, the relational database got
better results than the nonrelational database.

The authors of [9] introduced a framework capable of data
manipulation in order to overcome the problems related to the
decreasing efficiency of the searching in the nonrelational
databases. Before performing the basic operations of data
selection, data insertion, data update, and data delete this
framework uses mapper function. The main role of the
mapper is to change the data on the base of rules, to such
form, which complies with principles of nonrelational
database MongoDB more. With the use of this module, the
speed of data searching is in majority of cases higher in
nonrelational database MongoDB compared to the relational
database MySQL. Another concept used in this framework is
the Cataloging module, which uses JSP (JAVA) as a web
programming technology and MySQL as DBMS. There are
two frameworks supporting this concept, Structs and
Hibernate. Structs are used to set users’ interface and the
Hibernate regime is used to map the relational data to the
object-oriented data, which will be used by JSP.

In our work, we also design and implement framework,
which uses two database types. The first database is
nonrelational database DynamoDB serving as a primary data
storage. In the case, when user demands data, the values will
not be directly given to them from the nonrelational database,
but the values will be transferred to the in-memory database.
The main challenge in this approach is to transfer the data
from the nonrelational model to the in-memory model.

III.

In this part of presented paper, we introduce two modules
which are used in order to make the searching in the
nonrelational databases more effective. Data Cached Module
(DCM) and Data Elastic Module (DEM). DCM serves as a
data storehouse, whose role is the data transfer to the buffer
memory. DEM serves as a tool for automatic adjusting to the
data size.

A. Data Cached Module

The created module serves as a way of the data processing
in the memory. We connected the data we store in the
nonrelational database DynamoDB to highly available buffer
memory Amazon DynamoDB Accelerator, well known in
short as DAX, with the help of API interface. This method
helps us with Side-cache access, Read-through cache access
and Write-through cache access as follows:

a) Side-cache — This principle helps us with high
overload during the reading of information from the
memory. The principle works as follow (see Fig. 1):

1. Anapplication first tries to load the data for
a given key-value couple from the buffer
memory. If the buffer contains queried
data, the value of this key-value pair is
returned as and output of the operation.
Otherwise, step 2 follows.

2. Since the demanded key-value pair was not
found in the buffer, the application loads
the data from the basic data storage.

3. A key-value pair from step 2 is written to
the buffer memory to make sure the data
are present when the application needs to
load the data again in the future uses of
similar query.

OUR CONTRIBUTION

66

978-1-6654-3692-2/21/$31.00 ©2021 IEEE



The International Conference on Information and Digital Technologies 2021

Application

CACHE
1 read
/ wirite

2read
‘ - E
Application

DynamoDB

Figure 1. Side-cache algorithm

b) Read-through cache — DAX is a buffer memory for

the reading - it is compatible with API for the
reading of DynamoDB and stores the results
Getltem, BatchGetlem, Scan, and Query to the
buffer memory, if they are not currently in DAX.
The buffer memory for the reading is effective in
high working loads. This principle works as follow
(see Fig. 2):

1. Regarding a key-value couple from the
application, algorithm first tries to load the
data from DAX. In the case the buffer
contains queried data, the value of this key-
value pair is returned as and output of the
operation. Otherwise, step 2 follows.

2. Transparently for the application, if a semi-
memory happens, DAX will load a couple
of key-value from DynamoDB.

3. To make the data available for every
reading that follows, a key-value pair is
stored in the semi-memory of DAX.

4. A key-value couple is then returned to the

application.
1 2
L e,
real e e read
— — ]
4 S— 3

Application

Figure 2. Read-through cache algorithm

c¢) Write-through cache — Similarly to the semi-

memory for the reading, a semi-memory for the data
writing also operates in a line with the database and
updates the semi-memory, when the data is written
to the basic data storage. DAX has also buffered
memory for writing since it stores to the buffer
memory (or updates) the items with Putltem,
Updateltem, Deleteltem and BatchWriteltem API,
because the data is written or updated in
DynamoDB. At first, DAX is updated (everything is
transparent for the application). The following steps
indicate a procedure for buffer memory of write-
through type (see Fig. 3):
1. The application will write itself to endpoint
DAX for a given key-value couple.
2. DAX will catch the writing and then will
write a key-value pair into the DynamoDB.
3. After the successful writing, DAX hydrates
buffer memory with a new value so

whichever following the reading of the
same couple key-value results in a finding
of the buffer memory. If the writing is
unsuccessful an exception will return to the
application.

4. Confirmation of successful writing will
then return to the application.

_—
WIE o o write
e I —

Application

Application

Figure 3. Write-through cache

B. Data Elastic Module

The created module works with the data which increases
demands for the storage space. Nonrelational database
DynamoDB fulfills the task of a wide data storage and in the
case of the data transfer to the in-memory database, size of
the data can grow from several megabytes to several
gigabytes very easily. This problem is solved with the use of
the created module.

We configured monitoring of metrics in cloud service
Amazon with the help of Amazon CloudWatch service. The
mentioned service makes it possible to edit (to add and to
remove) new computation units in the case of enabling of
horizontal or vertical scaling. An advantageous characteristic
of this method is the horizontal scaling which, in the case of
a large number of the data uploads, invokes warning of
system overload and a script for the reading of information
from other replicas in service CloudWatch. The horizontal
replica is the part of the script performed automatically
during the configuration of the in-memory database DAX
with the following script:

aws dax decrease-replication-factor |
--cluster-name MyNewCluster |
--new-replication-factor 3

The monitoring of the metrics in the same way with our
method also makes the vertical scaling possible - the scaling
by addition or removal of the computation units (Fig. 4).

Figure 4. Application Load Balancer for in-memory database

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

67



Improved method of selecting data in a nonrelational database

In a situation, when the values retrieved from the
nonrelational database do not fit the in-memory database, the
event is invoked again with the help of service CloudWatch,
which will cause the addition of a new computation unit.
When the computation unit is not needed anymore, an
instance is automatically released, which results in saving of
the buffer memory and optimization of a price.

IV. EXPERIMETNS

In the very first step, we created a simple database model
presented in the Fig 5. This database model consists of two
tables - user and comment. These two tables are
interconnected by identification relationship of type I:n,
which means one user can create number of various
comments and various comments in the table belong to one
user.

Subsequently, we compared various commands, whose
aim is to retrieve information from implemented database
model. The objective is to measure time of computation of
simple queries in conventional systems.

In the sections A and B, we present measurements for four
sizes of queries in the relational database Oracle (section A)
and nonrelational database DynamoDB (section B).

Since an important aspect of this paper is use of the in-
memory database, we also compare the times of various
operations during data selection in section C.

In the section D, we compare these conventional
approaches to the problem with proposed solution described
in the secion III.

_| Comment v
comment_id INT

» comment_text VARCHAR(45)

» created_at DATETIME

Usar_user_id INT

—] User v
usar_id INT

» name VARCHAR(45)

» surname WARCHAR(45)

+ identity_card VARCHAR(45)
» |

Figure 5. Database model

A. Experiments on relational database Oracle

We inserted 1000 records into table wuser and 1000
records into table comments which are based on the defined
structure. In the case of this paper, we are interested only in
information about the time needed for record searching. We
created 3 data selection commands for these purposes:

(1) SELECT name, surname FROM user
JOIN comment USING (user_id);

(2) SELECT * FROM user
JOIN comment USING (user_id)
WHERE comment_text LIKE “%today%”;
(3) SELECT name, surname,

to_char(created_at,
FROM user

JOIN comment USING (user_id)
WHERE ca >= TRUNC(current_date)
and ca < TRUNC (current_date) + 1;

"YYYY-MM-DD HH24:MI:SS') ca

The first 1000 records served as benchmarking records to
us - from these results, we continued our research. The main

purpose of the nonrelational databases is to effectively store
large amounts of data, and that is, why the records for other
purposes will be created with the sizes of 100 000 records for
table user and 100 000 records for the table comment.
Subsequently, all records are deleted, and the dataset of size
10 000 000 records will be inserted to both tables. As the last
size of the datasets, we chose a value of 100 000 000 records
for user and comment tables.

A generator was used for record creation with the size of
1 000, 100 000, 10 000 000 and 100 000 000, which can be
found on the following address:

https://www.generatedata.com/

The generator provides an option to define names and
types of attributes and to generate an arbitrary number of the
values. After fulfilling the tables by the generated values, we
recorder the times needed to perform operations (1), (2), and
(3). These measured times are presented in the Table 1. All
measured values for processing of commands (1), (2), and (3)
are stated in seconds.

Table 1. Measure time for operations (1), (2) and (3)

Count of 1000 100 1000 10000
records/operatio 000 0000 0000
(Ill) 0,002 0,004 0,028 0,44
?2) 0,(())02 0,004 0,031 0,45
3) 0,302 0,304 0,030 0,45
1 4

B. Experiments on nonrelational database DynamoDB

We used commands (1), (2), and (3) to find out the
velocity of data queries in the nonrelational database
DynamoDB. The values inserted into the database were left
the same as in experiments in the relational database. The
structure is fully the same as is presented in the Fig. 3.

Table 2. Measure time for operations (1), (2) and (3) in

DynamoDB
Count of 1000 100 1000 10000
records/operatio 000 0000 0000
(Ill) 0,003 0,006 0,047 0,82
?2) 0,303 0,306 0,048 0,83
3) 0,303 0,(?06 0,046 0,82
7 8

The values, needed to get the data from the nonrelational
database DynamoDB are presented in the Table 2. All
measured values for commands (1), (2), and (3) are stated in
seconds.

When comparing values of computation time of the same
operations between the relational and nonrelational
databases, we can clearly see the significant difference. We

68

978-1-6654-3692-2/21/$31.00 ©2021 IEEE



The International Conference on Information and Digital Technologies 2021

can conclude that data selection operation in nonrelational
databases is less effective than in the relational database
Oracle.

C. Experiments for the in-memory database Redis

The data storing in the in-memory database is
diametrically different than in the relational or nonrelational
databases. Except for the mentioned fact, there is also
problem with the amount of data caused by computer
memory limitations. The computer memory used for testing
purposes was about 8 GB.

Table 3. Structure of the data in the in-memory database

ID Name Surname Identity card
1 John Harper 12341324
2 Joe Bush 12341234
3 George  Obama 23524675
1000 Alan Felps 45674866

As seen in the Table 3, we created records with the
identical structure to the previously used table wuser - ID,
Name, Surname and Identity card. Specifically, we create
datasets of 100, 300, 500 and 1000 records.

Three commands were created for the purposes of the
testing of the in-memory databases’ effectiveness. These
commands were structured as follows:

(4) MGET Name

(5) MGET Name, Surname

(6) MGET Name, Surname, Identity card

(7) MGET Name, Surname, Identity card, Age

We applied the same principle during filling the database
as in previous steps. In the specific case, we inserted the
generated values to the database, tested operations (4), (5),
(6), and (7), and recorded the measured values. Subsequently,
we deleted all the records and inserted the next dataset of 300
records to the database. We continued in this fashion until the
size of 1000 records in the database was reached. The
measured values for the operations are presented in the Table
4.

Table 4. Measure time for Redis database

Count of 100 300 500 1000
records/operati
on
“ 0,0002 0,0002 0,0002 0,0002
0 2 1 8
Q) 0,0002  0,0002 0,0002 0,0002
1 3 5 9
6) 0,0002 0,0002 0,0002 0,0002
1 2 5 8
@) 0,0002  0,0002 0,0002 0,0003
3 4 8 2

All measured results in the Table 4 are presented in
seconds. The seventh operation is influenced by the fact, that
value “age” does not exist. As can be seen, the measured
values are not diametrically different with the increasing
number of records. It is necessary to point out, that with
defined growth of the records, it is the logic fact mirroring the
efficiency of the searching in the memory.

D. Comparison of conventional methods and proposed
method

The values we measured in the experimental activity
presented in the sections A, B, and C serve for comparison of
conventional methods with the proposed method. The
compared values operation (1) on the datasets of 1 000 and
1 000 000 records are presented in the Table 5.

Table 5. Comparison of query performance

Count of 1000 1 000 000
records/operation
Oracle 0,0020 0,44
DynamoDB 0,0035 0,82
Our Approach 0,0033 0,42

As seen in the Table 5, the values measured while using
operation (1) with a low number of records in the table, do not
hint towards any big improvement of the searching in the
nonrelational table. This is influenced by the data transfer to
the memory. A factor of the transfer indicates a necessity to
transfer the data from nonrelational database DynamoDB to
buffer memory DynamoDAX, which takes a certain time
which is combined with the computational time of the query
processing itself. This means, that in the operation of data
selection, the data are physically retrieved from in-memory
database, not from the nonrelational database DynamoDB.

Based on the data transfer, it was possible to also compare
the measured times of the experiments with the in-memory
database and the data transferred to DynamoDAX with the
size of 100 and 500 records and with the use of operation (5).

Table 6. In memory query performance

Count of 100 500
records/operation
Redis 0,00020 0,00021
DynamoDAX 0,00015 0,00017

The values recorded in the Table 6 show efficiency of the
data transfer. As cane be seen, the values in buffer memory
Dynamo DAX are more effective from the time perspective
than in-memory database Redis.

Whole achieved results related to operation data selection
in nonrelational database DynamoDB were not, before the
application of our method, timely the same effect than after
the application of our method. With the use of machine
learning and transferring the data to the database in memory,
the efficiency of operation data selection in the nonrelational

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

69



Improved method of selecting data in a nonrelational database

database became more effective after achieving 1000 000
records than with the searching of the data in relational
database Oracle. A huge advantage, that results in using of
cloud storage Amazon, is related also to the possibility of
automatic scaling respectively adding of performance and
increasing of the storage not only in nonrelational database
DynamoDB, but mostly in the database in memory
alternatively, if we do not need as many calculation units, so
the reduction of the size of the data storage happens, and so
the decreasing of the cost related to running of our designed
method happens.

CONCLUSION

NoSQL databases play a significant role in storing and
processing large amounts of data and they are used in various
wider social applications such as Twitter, Facebook, Google,
and Yahoo, but they help also with the decision support or in
the advanced analyses. These databases became the master of
high effectiveness of storing and availability of the large
datasets. With this came the loss of the effective searching
methods, which can be found in the traditional databases. This
paper was focused on the question of the data searching time
optimization in NoSQL databases, specifically DynamoDB in
the cloud environment of Amazon.

In this paper, we developed the data searching algorithm,
which can make the searching in a nonrelational database
DynamoDB more effective. The designed algorithm is
composed of two parts, the first part is based on the principle
of caching the data from the nonrelational database
DynamoDB to buffer memory DynamoDAX. The second part
is based on the effective data and system management - in the
case of the large amount of data, system automatically
increases the number of computation units of the buffer
memory, and by this adjusts the size of the database to the
increasing needs of the size of incoming data. This fact
relieved us from the limitation of the database size towards the
data.

The experiments provided us with useful information
about the performance and the effectiveness of the created
method. It is noted, that the system for processing artificial
intelligence demanded higher overhead costs together with
automatic creation of the database in memory, but this system
was able to make the process of searching in the nonrelational
database more effective. On the basis of the experiments, it is
clearly seen, the created method is more and more effective
with the increasing data amount, which is done by the data
transfer to the memory.

Our future work will focus on a generalization of this
model and provision of user interface for full use of the created

procedure not only for Amazon cloud but also for other in-
memory databases such as Redis and Memcached. We also
plan to evaluate the suggested systems empirically, from a
perspective of consistency and performance in other
environments, which need fast response for the data demand.

ACKNOWLEDGMENT

This publication was realized with support of Operational
Program Integrated Infrastructure 2014 - 2020 of the project:
Intelligent operating and processing systems for UAVs, code
ITMS 313011V422, co-financed by the European Regional

Development Fund.
MINISTRY
ﬁ OF TRANSPORT

EUROPEAN UNION
European Regional Development Fund AND CONSTRUCTION
OF THE SLOVAK REPUBLIC

OP Integrated Infrastructure 2014 — 2020

REFERENCES

[1] R. Ceresiak and M. Kvet, “Comparison of query performance in
relational a non-relation databases,” Transp. Res. Procedia, 2019.

[2] Y. Li and S. Manoharan, "A performance comparison of SQL and
NoSQL databases," 2013 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM), 2013,
pp. 15-19, doi: 10.1109/PACRIM.2013.6625441.

[31 T.N.Khasawneh, M. H. AL-Sahlee and A. A. Safia, "SQL, NewSQL,
and NOSQL Databases: A Comparative Survey," 2020 1Ith
International Conference on Information and Communication Systems
(ICICS), 2020, pp. 013-021, doi: 10.1109/ICICS49469.2020.239513.

[4] Dudas A., Skrindrova J., Vesel E.: Optimization design for parallel
coloring of a set of graphs in the High-Performance Computing. In:
Proceedings of 2019 IEEE 15th International Scientific Conference on
Informatics. pp 93-99. ISBN 978-1-7281-3178-8

[5] Dudas A., Skrinarova J.: Edge Coloring of Set of Graphs with The Use
of Data Decomposition and Clustering. In: IPSI Transactions on
internet research : multi-, inter-, and trans-disciplinary issues in
computer science and engineering. Vol. 16, no. 2 (2020), pp. 67-74,
ISSN 1820-4503

[6] P.T. Hulina and A. R. Hurson, "Reducing average access time of a
parallel memory in a database environment by data
permutation," Twenty-Third Annual Hawaii International Conference
on  System  Sciences, 1990, pp. 65-71 vol.1,  doi:
10.1109/HICSS.1990.205101.

[71 I Pelle, J. Czentye, J. Doka and B. Sonkoly, "Towards Latency
Sensitive Cloud Native Applications: A Performance Study on
AWS," 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), 2019, pp. 272-280, doi:
10.1109/CLOUD.2019.00054.

[8] H.Wang, Q. Zhu, J. Shen and S. Cao, "Web-Service-Based Design for
Rural Industry by the Local e-Government," 2010 International
Conference on Multimedia Information Networking and Security,
2010, pp. 230-235, doi: 10.1109/MINES.2010.58.

[91 G. Karnitis and G. Arnicans, "Migration of Relational Database to
Document-Oriented Database: Structure Denormalization and Data
Transformation," 2015 7th  International ~ Conference  on
Computational Intelligence, Communication Systems and Networks,
2015, pp. 113-118, doi: 10.1109/CICSyN.2015.30.

70

978-1-6654-3692-2/21/$31.00 ©2021 IEEE



