
Mapping rules for schema transformation
SQL to NoSQL and back

Roman Čerešňák
Faculty of Management and

Informatics

University of Žilina

Žilina, Slovakia

roman.ceresnak@fri.uniza.sk

Adam Dudáš
Faculty of Natural Sciences

Matej Bel University

Banská Bystrica, Slovakia

adam.dudas@umb.sk

Karol Matiaško
Faculty of Management and

Informatics

University of Žilina

Žilina, Slovakia

karol.matiasko@fri.uniza.sk

Michal Kvet
Faculty of Management and

Informatics

University of Žilina

Žilina, Slovakia

Michal.kvet@fri.uniza.sk

Abstract— Efficient way of storing data has always been a key

requirement for a properly designed database system. With the

growing demand for this property, the first concept of an efficient

data storage called relational databases was developed in the 1960s

- this type of databases is still used as the primary data storage to

this day. In recent years, however, relational databases have failed

to deal with two aspects of modern data: large volumes of data and

unstructured data. In order to solve the mentioned problems

looser databases with a flexible structure and a more efficient way

of working with large volumes of data have been created. In many

cases, non-relational databases also called NoSQL databases, have

become a replacement for relational databases. Several

applications require migration from relational to non-relational

databases based on suitable properties while there is number of

problems associated with this migration. Moving records from a

relational database to a non-relational database requires having a

structured methodology for transforming existing data. This data

transformation from a relational database to a non-relational

database (such as MongoDB), is more difficult due to the non-

existent transmission standards. The main objective of this paper

is to present a proposal for mapping rules of the relation database

schema to the NoSQL database schema, specifically NoSQL

database of the key-value type, such as MongoDB. The mapping is

performed based on the type of relationship that occurs in the

relational database, and this process can also be applied in the

opposite direction, from the non-relational MongoDB database to

the relational database.

Keywords—Oracle; MongoDB; Mapping rules; ETL;

undefined data

I. INTRODUCTION

The relational databases are being developed since the
1960s, which resulted in a stronger theoretical model, a larger
range of features and thus a greater use of these databases. The
main property of the relational database is the storage of data in
highly structured tables while maintaining a normalized form.
These two objectives have become a limitation, which (with the
growing number of data) has become an obstacle to their use.

The problem with modern data can be identified as the
diversity of data and their non-normalization, which means that
objects as such are not structured with the use of same formula,
number of properties or the same data types. While working with
objects, the relational databases cannot be compared with the
non-relational ones.

Potential of working with objects and large volumes of data
was understood by notable organizations such as Google,
Amazon or Microsoft, who chose NoSQL databases as their
primary data storage [1]. With the increasing use of non-
relational databases, it became important to find a concept of
proper mapping of a schema in relational databases to schemas
in various non-relational databases. Proper transformation of
schemas between relational and non-relational databases enables
the integration of data, which is now common practice. The
problem of such mapping is currently a large number of types of
NoSQL databases. This is reason for several researchers trying
to define different types of rules and different mapping methods
based on types of NoSQL databases.

Since we dealt with the non-relational database MongoDB
in a large part of our research, we also focus on this mentioned
database in the presented paper. Data in the non-relational
database MongoDB are based on documents, each of which is
identified by a specific key [2]. These documents are grouped
into collections, which are stored sequentially, and new
documents can be added to any collection at any time [3]. By
inserting an object into an object, the objects are gradually
nested and thus certain layers in data structure are created. There
are two ways to model relationships in document-based NoSQL
databases - the relationships based on references and the
relationships based on insertion. Referential relationships are
similar to relational databases, where user's document ID
becomes a foreign key in another document. While using
insertion relationships, documents are truly nested in other
documents so both can be accessed together.

After applying the basic rules, we use a method for data
transformation, which is well known by the abbreviation ETL
(Extract, Transform, Load). We create the rule set in such a way
that the program is able to apply the rules based on the input data
and thus autonomously and without difficulty move the data
from one type of database to another.

Since it is not possible to design and implement a general
module working for all relational databases such as MySQL,
MsSQL or PostgreSQL and then apply mapping rules to various
types of non-relational databases, such as column-oriented
database, graph model and key-value database, we present rules
for mapping of relational database Oracle to the non-relational
database MongoDB.

58 978-1-6654-3692-2/21/$31.00 ©2021 IEEE

The rest of presented paper is structured as follows:

- The works, which are focused on schema
transformation between relational databases and
NoSQL databases are presented in the section II.

- Section III contains proposed mapping rules for schema
transformation from SQL to NoSQL and back.

- In the fourth section, we present experimental part of the
paper – we experimentally tested proposed mapping
rules with the use of NoSQL queries and ETL.

II. RELATED WORK

The importance of a structured schema transformation
between various types of databases has led many researchers to
exploration of solutions for transformation of relational database
schema, which is the most commonly used database today. In
the last two decades, we have been able to follow a large number
of transformation work focused on relational databases, e.g. [4,
5], in order to meet the growing need for semi-structured and
unstructured data. In many works on schema transformation, not
only the uniqueness of the newly created data structures is taken
into account, but also the semantics that can be included in the
relational databases are preserved.

Within the issue of record mapping between relational and
non-relational databases, it is possible to find several works
proposing techniques for transformation of relational databases
into column-oriented NoSQL databases. In [6], the authors
mapped entities and association relationships in an improved
entity relationship diagram to the HBase database using
following three rules. In the first rule, a column family is created
for each table, and the primary key of each table becomes the
row key in the column family. In the second rule, a new column
family is added to another column family to become a
supercolumn family. For a M:N association relationship, new
column families are created in the relational database and
inserted into HBase on both sides, which means that the join
table in the relational database is deleted. The purpose of this
rule is to maintain the referential integrity of the foreign key
mechanisms in the relational databases. The third rule reduces
foreign keys by merging them into a super column.

There are several works, in which authors proposed a method
for schema transformation from relational database to a NoSQL
database based on documents. In [7], the authors proposed a
framework for implementing an algorithm that used metadata
stored in the relational databases to automatically transform
entities and association relationships. In [8], the authors used a
separate application called MigDB, which parses the tables in
the relational databases, creates a JSON file based on the tables,
and then passes the JSON file to the neural network. In addition,
the network decides the most appropriate structure for mapping
of the JSON file – nested structure of referential structure. This
work was done only to map association relationships.

In [9] the authors mapped the relationship of 1:M from
relational databases to graph-based NoSQL, specifically the
database GraphQL. The starting node in the graphs consists of
multiple pages, and the primary key of one page is inserted into
multiple pages by preserving the primary key as an edge

property. The join table in the relational database is not used to
store information as a relationship property. While mapping
ternary relationship, the join table and foreign keys of the other
tables were removed, but the relationship attributes were
preserved as a property of the relationship between the nodes in
the graph.

In [10] the authors presented the transformation of relational
database into several types of NoSQL, specifically into a few
key – value databases, column-oriented database, document
database and graph-based database. The authors identified the
concepts of each database using defined n-tuples. Subsequently,
the authors presented algorithms for performing the
transformation and a case study as proof of the concept. This
work is complete in the sense that it includes all types of non-
relational databases. However, it is not clear that all types of
relationships are included in the relational database.

In [11], the authors introduced a data adapter used for
querying and mapping between SQL and NoSQL databases. The
adapter allows queries from the application and deals with the
transformation of the database to a server with a relatively low
time difference. Although this work implements a data adapter,
it does not provide clear rules for the transformation between
two types of databases - a mapping between various non-
relational databases or a relational and non-relational database.

In addition to the data structure and relationships, several
works have recently been published in the area of transformation
implementation. In [12], the authors presented a framework,
which supports convenient migration from relational to NoSQL
database management system. The framework consists of two
modules, namely the migration and data mapping modules.
Since the work focuses more on implementation, it does not
present a clear transformation existing within the data mapping
module. Instead, the article presents the results of experiments
with various database operations of the mapping results.

Since the lack of the structure can cause not only ambiguity
but also the non-definition of certain values, we also had to deal
with this issue. In the research, we applied the method presented
in the work [13], where researchers dealt with temporal database
architectures, which manage undefined values and propose a
comprehensive classification system based on transactions, data
reading and indexes. The article deals with techniques for
modeling undefined values and covers synchronization
processes using data groups. Authors also propose solutions for
efficient data acquisition with emphasis on undefined values and
states.

An interesting study regarding transformation was published
in an article [14] where the authors proposed an approach to
model transformation and data migration from a relational
database to MongoDB. Their work is divided into four sections
where in the first part of the work authors take into account the
characteristics of the query and the data characteristics of the
relational database. Subsequently, in the second part, they
propose an algorithm for transforming the model based on
description tags and action tags. The third part is focused on the
automatic migration of data to MongoDB based on the result of
the transformation of the model, and in the last – fourth – part of
the paper a transformation tool is designed and implemented.

The International Conference on Information and Digital Technologies 2021

978-1-6654-3692-2/21/$31.00 ©2021 IEEE 59

III. PROPOSED MAPPING RULES

Although the works mentioned in the previous section
brought relevant and important ideas to the problem of schema
transformation from relational to non-relational databases, a
large number of studies contained ideas dealing only with the
associative relationship between individual types of databases.
Many of these studies do not deal with the loss of referencing in
the schema or loss of values, these methods do not apply
backwards compatibility and also do not address the change of
values after use of proposed application based on proposed rules.
In order to focus on solving the problem, we suggest ways to
implement mapping rules when checking undefined values, and
then we carry out the process of changing values from the
relational database Oracle to the non-relational database
MongoDB.

In this part of the paper, we present the rules for transforming
schemas from relational databases to non-relational databases.
The main objective is to present three basic types of
relationships between entities - these are relationships of 1:1,
1:M and M:N types.

A. Transformation of association relationships of One-to-One

(1:1) type from SQL to NoSQL

Since One-to-One relationship is one of basic relationships,
we decided to define two relations for the relational database
Oracle. These are relations student and college. The student
relation consists of three attributes, these are the primary key
Student_ID, the name of student Student_Name and the address
of student Student_Address. The college relation consists of two
attributes and they are College_ID which also represents the
primary key of the college and the attribute of the name of
collage College_Name.

To connect these relations, as shown in Figure 1, a
relationship called StudyIn is created. Based on the E-R diagram
from Figure 1, we created a rule presented in the lower part of
this figure. Since this is a 1:1 relationship, the ratio of student-
collage relationship is in represented in the same way - one
object is nested into another object.

Fig. 1. 1:1 mapping rule for SQL to NoSQL

B. Transformation of association relationships of One-to-

Many (1:M) type from SQL to NoSQL

The relationships of the type 1:M in relational databases do
not complicate diametrically the relationship we presented in the
previous step. Since the 1:M relationship differs only in the
number of values occurring, the only difference is to increase the
number of individual records in json format and apply changes.
We present this relationship in the Figure 2 - it is clear, that only
one change occurred (in the relationship StudyIn where 1 has
changed to M). The presented mapping rule is proposed as
follows:

· First table is created (in our case it is the table
student)

· Subsequently, algorithm determines type of
relationship based on the number of entities:

o If number of entities is equal to one,
algorithm applies relationships based on
the subsection A of this section.

o In other cases, algorithm adds new objects
and creates lists in the newly created
collection.

Fig. 2. 1:M mapping rule for SQL to NoSQL

C. Transformation of association relationships of Many-to-

Many (M:N) type from SQL to NoSQL

The principle of creating a mapping rule for the relationship
M:N is straightforward. First, one collection is created, in our
case the collection student. After creating this collection, the
college collection is created – this collection already contains
values of the primary key of student (specifically the
Student_ID). Subsequently, a new collection presenting the M:N
relationship is created in the college collection. Since the
StudyIn object is a nested object in the college collection, it can
always retrieve values for references to the student and college
collections. For this reason, we have defined additional values
in the StudyIn collection – namely the value City.

Mapping rules for schema transformation SQL to NoSQL and back

60 978-1-6654-3692-2/21/$31.00 ©2021 IEEE

Fig. 3. M:N mapping rule for SQL to NoSQL

Since we only defined the principle of mapping from tables
to collections, which means the transformation of the schema
from a relational database to a non-relational database, in the
next step we create mapping rules in the opposite direction. In
this process, the freedom of the structure proves to be an
unfavorable property in a backwards processing of schema.

D. Transformation of association relationships of One-to-One

(1:1) type from NoSQL to SQL

It is more difficult to design and implement mapping rule
when creating a schema from an undefined structure than in the
case of creating mapping rules from a relational database to a
non-relational one. Since the lack of strict structure of the
schema is negative and the data types are key to the database, we
need to create a universal model for the change of data types.

With the One-to-One object mapping rule, the number of
nested objects in the collection student is verified. In the case the
number is equal to 1, then the table student and the table college
are created and a 1:1 association relationship is created between
them.

Fig. 4. 1:1 Mapping rule for NoSQL to SQL

E. Transformation of association relationships of One-to-

Many (1:M) type from NoSQL to SQL

In the case, that algorithm finds an object in which the
nesting of objects takes place, the object in question is verified.
If the algorithm detects the number of nested objects greater than
one, this suggests that the One-to-One mapping rule is not fit for
use with the object - One-to-Many mapping rule is used. In such
case, objects from the nested collection are read until the record
corresponding to last object of original dataset is created.

Fig. 5. 1:M Mapping rule for NoSQL to SQL

F. Transformation of association relationships of Many-to-

Many (M:N) type from NoSQL to SQL

The transformation of M:N relationships is the most
complex when creating a mapping rule due to multiple nesting
of objects. In the case of single-layer nesting, as presented in the
Figure 6, it is necessary to solve the problem with only one
reference to the parent object - finding the collection in the
collection and looking at the _id value of the parent collections.
In the case of multiple nestings, there is a relationship of M:N
type, which is associated with another relationship of the same
type. There must be multiple use of the relationship F or other
relationships applied in sections E and F according to Figures 4
and 5.

Fig. 6. M:N Mapping rule for NoSQL to SQL

The International Conference on Information and Digital Technologies 2021

978-1-6654-3692-2/21/$31.00 ©2021 IEEE 61

Fig. 7. Complex data model used in the testing of proposed mapping rules

G. Solution to the problem of number of attributes

The lack of strict structure of a data schema is an excellent
feature in many respects, but not when creating a schema in a
relational database. Since the non-relational database MongoDB
does not create a schema, or said more precisely it creates it in a
way that is diametrically different that relational, we needed to
create a mechanism to manage the number of attributes. Since
the number of attributes differs in the non-relational databases,
we based our mechanism on the records containing highest
number of attributes. That is, the algorithm traverses all the
objects in the collection. The algorithm maintains a reference to
the object and the number of its properties. If the algorithm finds
an object with more attributes, it stores it in a local variable and
then continues the search. At the end of the run of algorithm, it
contains the object and the number of attributes. The proposed
method creates the initial number of objects based on this object.

In the second cycle, the algorithm detects additional
attributes and compares them with the attributes of the object in
the local variable. If there is an attribute that is not contained in
the local variable, the algorithm completes this attribute set and
continues until all objects are verified and the remaining
attributes are added to the set of attributes. This means, that an
object stored in the local variable contains the attributes of all
objects of the collection.

In the third cycle, objects and number of values represented
in the objects are verified. Since the objects do not contain the
same number of attributes (both as each other and as the model
object stored in the local variable), algorithm needs to add
number of attributes to all objects along with their data type and
the name. This represent an operation, which tracks number of
uses of various data types in given attribute and based on the
number of uses decided which data type is used in the created

schema. For example, if the attribute color contains values for
10 objects while six times the values is integer and four times a
string, the algorithm assigns data type of the attribute as int.
Remaining four values must be type consolidated by ETL.

IV. EXPERIMENTS FOR VERIFICATION OF PROPOSED

MAPPING RULES

For testing purposes, we used the model presented in the Fig.
7. The values of attributes are not significant for us at present,
since in this paper we do not perform the overall transformation
of data but only define the rules, it is not vital to describe them.
The purpose of this model is to capture the 1:1, 1:M and M:N
relationships. During the initial verification and application of
the relationships when mapping the schema from chosen
relational database to the non-relational database, the
relationships presented in the section III were applied,
specifically from subsections A, B and C. Based on these
relationships, the schema transformation was performed without
further additional modifications.

Since we wanted to verify the backwards compatibility and
determine whether a change in structures or a change in data
types can affect the whole transformation process, we decided to
perform two types of experiments.

The first type of experiment consisted of us moving the
schema from the relational database to the non-relational
database using the rules defined in the section III. Mapping rules
1, 2 and 3 were enough for us to completely transfer the data
scheme. Subsequently, we performed steps based on the
proposed rules 4, 5 and 6 and transformed the schema backwards
(back to relational database). While comparing pre-
transformation and post-transformation schemas, we focused on
consistence of schema itself and on consistence of data types.

Mapping rules for schema transformation SQL to NoSQL and back

62 978-1-6654-3692-2/21/$31.00 ©2021 IEEE

There were no differences - the whole structure was the same
when checking the schema itself and data types.

However, the problem occurred when transforming the
tables presented in the Table 1. These tables were randomly
selected, and their values were randomly changed. Other than
these changes, new attributes were added. In these cases, the
mapping rules were able to cover all the required values when
changing the schema from a relational database to a non-
relational database (YES values indicate the success of the
mapping (SQL to NoSQL column)).

During the experimental work, we changed and modified
data types, changed values or added new attributes to the
database. When changing these values, we wanted to move the
schema to a relational database, and as can be seen from the
results in the Table 1 (specifically NoSQL to SQL column),
there were problems with this transformation. Even if the rules
created by us revealed the change and worked properly, it was
necessary to make additional adjustments - modifying the data
type for a schema in a relational database to be compatible with
original schemas, and it is also necessary to add new attributes
to the database.

Our mapping rules demonstrate the detection of
incompatibilities and also know how to identify collisions.
Based on our research, we can already send simple SQL views
to modify the data schema during data transformation, which
will be related to the full compatibility of the process.

Table 1. Properties of Mapping Rules

Mappings
Results of mapping rules

Table
SQL to

NoSQL

NoSQL to

SQL

1 EQUIPMENT YES YES

2 PROJECT_EQUIPMENT YES NO

3 PROJECTS YES NO

CONCLUSION

In the presented paper, we proposed a set of rules for
transforming a schema from relational database into non-
relational database NoSQL, specifically the MongoDB. The
rules cover the different types of relationships that can appear in
the data stored in relational databases, namely associations,
inheritance, and aggregation. Along with the types of
relationships, cardinalities are also considered.

After defining the rules, we applied the mapping rules to the
case study in the relational database, where we were able to
create 16 documents for the non-relational MongoDB database
from 14 tables with the correct mapping.

Proposed methodology works based on the following
principle. The application exports the data schema and passes all
tables on the basis of individual records. Then, it creates
mapping rules for individual tables, where the 1:1, 1:N or M:N
relationships are present. After all the rules have been created,
the record mapping process is computed. The mapping works on
the principle of ETL and applies the designed rules to the records
which enter the system. After successfully mapping the data, the
process ends and the rules are stored in additional storage space.

When applying the process in reverse i.e., the process from the
non-relational database to the relational one, we had to apply a
control rule - the rule for monitoring undefined values, which
often occurred in tables while working with the non-relational
database.

In order to verify the proposed method, we created a data
model which contains 1 000 records for each table. Experimental
activities are divided into two parts - the first part is the tracking
of records and mapping rules from the Oracle relational database
to the non-relational MongoDB database, in which the rule of
undefined values did not have to be applied. Otherwise, when
we created mapping rules from the non-relational MongoDB
database to the Oracle relational database, we had to apply the
rule of tracking undefined values and we also monitored the poor
compatibility between the changed values compared to the
original relational database.

In our future research, we set out to improve the method of
verification of undefined values and also to create improved
mapper. The new mapper should address compatibility between
individual data types, which in our current solution is not perfect
and sometimes requires human input into the mapping process.
As one of the possible variants, we propose to design and
implement a process of mapping to all types of relational
databases and then focus on all types of non-relational databases,
as the popularity of non-relational databases is constantly
growing.

ACKNOWLEDGMENT

The research was partially supported by the grant of The
Ministry of Education, Science, Research and Sport of Slovak
Republic - Implementation of new trends in computer science to
teaching of algorithmic thinking and programming in
Informatics for secondary education, project number KEGA
018UMB-4/2020.

REFERENCES

[1] L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and F. Mourão, “A framework
for migrating relational datasets to NoSQL,” in Procedia Computer
Science, 2015.

[2] V. C. Storey and I.-Y. Song, “Big data technologies and Management:
What conceptual modeling can do,” Data Knowl. Eng., vol. 108, pp. 50–
67, 2017.

[3] P. Atzeni, F. Bugiotti, and L. Rossi, “Uniform access to NoSQL systems,”
Inf. Syst., vol. 43, pp. 117–133, 2014.

[4] E. Pardede, W. Rahayu, and D. Taniar, Mapping Methods and Query for
Aggregation and Association in Object-Relational Database using
Collection. 2004.

[5] E. Pardede, J. W. Rahayu, and D. Taniar, “Object-relational complex
structures for XML storage,” Inf. Softw. Technol., vol. 48, no. 6, pp. 370–
384, 2006.

[6] C. Li, “Transforming relational database into HBase: A case study,” in
2010 IEEE International Conference on Software Engineering and
Service Sciences, 2010, pp. 683–687.

[7] L. Stanescu, M. Brezovan, and D. D. Burdescu, “Automatic mapping of
MySQL databases to NoSQL MongoDB,” in Proceedings of the 2016
Federated Conference on Computer Science and Information Systems,
FedCSIS 2016, 2016.

[8] G. Liyanaarachchi, L. Kasun, M. Nimesha, K. Lahiru, and A. Karunasena,
“MigDB - relational to NoSQL mapper,” in 2016 IEEE International
Conference on Information and Automation for Sustainability (ICIAfS),
2016, pp. 1–6.

The International Conference on Information and Digital Technologies 2021

978-1-6654-3692-2/21/$31.00 ©2021 IEEE 63

[9] D. W. Wardani and J. Kiing, “Semantic mapping relational to graph
model,” in 2014 International Conference on Computer, Control,
Informatics and Its Applications (IC3INA), 2014, pp. 160–165.

[10] M. Freitas, D. Souza, and A. C. Salgado, Conceptual Mappings to Convert
Relational into NoSQL Databases. 2016.

[11] Y.-T. Liao et al., “Data adapter for querying and transformation between
SQL and NoSQL database,” Futur. Gener. Comput. Syst., vol. 65, pp.
111–121, 2016.

[12] L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and F. Mourão, “A Framework
for Migrating Relational Datasets to NoSQL1,” Procedia Comput. Sci.,
vol. 51, pp. 2593–2602, 2015.

[13] M. Kvet, Š. Toth, and E. Krsak, “Concept of temporal data retrieval:
Undefined value management,” Concurr. Comput. Pract. Exp., vol. 32, p.
e5399, Jun. 2019.

[14] T. Jia, X. Zhao, Z. Wang, D. Gong, and G. Ding, “Model Transformation
and Data Migration from Relational Database to MongoDB,” in 2016
IEEE International Congress on Big Data (BigData Congress), 2016, pp.
60–67.

Mapping rules for schema transformation SQL to NoSQL and back

64 978-1-6654-3692-2/21/$31.00 ©2021 IEEE

