
The efficiency of the Temporal Medical Data
Retrieval

Michal Kvet, Karol Matiaško
Department of Informatics, Faculty of Management Science and Informatics

University of Žilina
Žilina, Slovakia

Michal.Kvet@fri.uniza.sk

Abstract—One of the significant aspects influencing patient

treatment is associated with decision-making correctness based

on reliable data inputs. Data should be managed, treated, and

provided in a robust and performance-effective manner.

Commonly, the patient needs to be monitored over time

reflecting the evolution. This paper deals with the temporal

database models and proposes an effective solution for the data

evaluation during the retrieval, so the query request can end

significantly sooner. It also points to the current problem of data

management in the cloud technology as a central data repository,

in which the data time perspectives can be shifted reflecting the

time zone, so the results must be transformed to provide relevant

data output in a client site.

Keywords—medical data; temporal aspect; complex indexing;

parallelism;

I. INTRODUCTION

Nowadays, great emphasis is done on complex patient
treatment, to ensure correct health care across the world. A
person is generally managed by the general practitioner, who
gets the main overview and shits the patient to the specialist
based on the assumptions and previous examination [10] [12].
Currently, data and results are commonly shared by the
centralized hospital, regional, or even national system. As
evident, data efficiency and proper management are crucial to
getting the relevant data almost immediately. Performance and
processing demand, mostly reflected by the time consumption
cover the inevitable elements to be treated. Data are stored in a
local on-premise server, but now, the strong demand to
centralize management in a complex cloud system can be felt
[6] [19]. The main reason is based on the data amount, which
is still rising. The patient is treated more and more complexly,
the medical care is still improved producing more reliable,
more precise data outputs, which must be stored, analyzed,
and retrieved on the demand. It is therefore clear, that the
problem of the efficiency of the whole process is relevant and
must be managed.

Moreover, nowadays, we can see the Covid-19 pandemics
across the world influencing any sphere. Business and
production are closed or strictly limited, transport is markedly
monitored to limit the spread of the virus, which strongly
influences the situation, fills the hospitals, and consequencing
in getting the massive number of victims.

With the gradual relaxation of measures against the spread
of coronavirus, there is again a strong need to monitor
outbreaks and thus reduce the impact and overall problems of
those infections.

Similarly, as already stated, all evaluations and systems
produce various data structures but have two common aspects.
Firstly, the produced data amount is significant and secondly,
there is strict pressure to get the data in a massive, parallel,
and mostly in a performance effective, robust, and reliable
manner. Such data have a common definition of the time
spectrum, as well as region assignment.

This paper deals with the temporal database architecture to
provide support for complex medical data. In section 2,
current technologies and temporal architectures are
summarized, pointing to the specifications and limitations.
The proposed extension is done by using an index relocation
unit to shift the internal granularity to fit the request specified
inside the query. Section 3 deals with the proposed
architecture for medical data management and supervision. In
section 4, the data retrieval process management handler,
covered by the two-level parallel indexing strategy is defined.
All data are time positioned. By shifting the environment to
the cloud technology, the problem of the different time zones
can be present, whereas most of the technology reference
server time, not the transformation to the client [1] [4]. As a
result, wrong values are provided. In section 5, we deal with
the transformation covering the analysis of the additional
demands to the processing. Internally, it is done by the query
time replacement using the translation package. Section 6
deals with the performance evaluation.

II. TEMPORAL ARCHITECTURES

Significance of the temporal data management in database
systems has been identified with the advent of the relational
paradigm supervised by the transactions. Soon, the first
temporal architecture delimited by the object-level temporal
model was proposed. The identifier of the object itself was
extended by the time attributes characterizing validity,
transaction validity, or other temporal attributes. As a
consequence, the object state cannot be uniquely identified by
the object representation itself, the definition of the time-
image should be handled, as well. The main disadvantage of
such an approach is just the granularity itself. Each new state
has a full definition, thus, each attribute value should be

50 978-1-6654-3692-2/21/$31.00 ©2021 IEEE

present. There is no need to get an image of several states,
there is no need to compose a state from several fragments.
Vice versa, such an approach can produce many duplicate
values, if the update operation is not synchronized across the
whole object state definition. Moreover, there is no solution
for dealing with just the relevance defining the region or
position of interest. Finally, such a solution can be
significantly ineffective in terms of performance, but mostly in
the aspect of the data storage demands. Original state values
can be copied to new images if no change occurs.
Synchronization across the whole state should be present to
obtain the optimal solution. As evident, object-level temporal
architecture is not commonly suited for the medical data with
the dynamic evolution reflecting the region of the interest
monitoring.

Attribute-oriented architecture was complexly defined in
[3] [4] [15]. Each state is delimited by the composition of
individual attributes along with the time definition. Each
change is divided into the attributes themselves, which are
maintained separately. Namely, each attribute change forces
the definition of the new state physically stored by the
temporal layer. Such architecture is suitable in terms of the
physical layer perspective. It is, however, clear, that the data
retrieval process can be demanding forcing the system to
calculate the state on demand. In ad-hoc networks forcing the
systém to obtain data dynamically with a strong impact on the
data transfer, such architecture is not suitable, whereas the pre-
processing and state composition can last too much time. In
medical data management, the situation is similar with the
particular emphasis on the processing efficiency of the state
retrieval as the data are commonly centralized. It creates
significant pressure on the optimization of data processing,
retrieval, and transmission. The architecture of the attribute-
oriented temporal model is in fig. 1. It consists of four-level
architecture. The first level deals with the current state of the
object. Physically, data are stored in the attribute granularity,
however, the retrieval representation is done using the object
perspective composition. The second level is formed by the
core of the solution – the temporal evidence management
layer. Any change is registered there, with the pointing
reflection to the particular layer in an attribute perspective.
Such a module is also responsible for the object granularity
state composition during the data retrieval. Level 3 deals with
the historical data, level 4 manages plans (level 4 is an
optional level, if no plans or states valid in the future need to
be monitored, such representation does not need to be used).
The temporal level is interconnected to the index relocation
unit, where the requested format is created, mostly modeled by
the object granularity. The index relocation unit is then
interconnected to the public interface providing result sets to
the client site. In comparison with the original attribute-
oriented granularity presented in [13], our proposed solution
uses an external source to provide any data granularity
perspective using an index relocation unit.

Extension to fuzzy management is discussed in [2] [5].

level 1

level 2

level 3

level 4

Current states
(attribute granularity)

Temporal module

Historical data
(attribute granularity)

Future plans
(attribute granularity)

Current states
(object level)

Historical states
(object level)

Future valid data
(object level)

Public interface

Client site

Figure 1.Attribute oriented granularity

The last solution is a group granularity composition. Instead

of storing each attribute change separately, the dynamic
temporal group can be identified (either manually or in an
automatic manner using a data analytics perspective). Thanks
to that, if several attributes are update synchronized, only one
new row is added to the temporal module limiting the amount
of the data to be stored, with no loss of the information value.
Physically, it is covered by the analytical module extending
the temporal module. In principle, each attribute represents the
one element group, so the reference is always done on the
group level, which can be temporarily grouped into the
various segments. Fig. 2 shows the group state hierarchy. The
input stream is routed to the data change barrier, where the
attribute or synchronization groups are identified by the
Grouper background process. The analytical module is
responsible for the synchronization detection, so the storage
demands are always up to date and optimized based on the
data flow. Note, that in fig. 2, individual levels are visualized
using the storage type, however, internally, current, future,
and historical data are treated and stored separately.

Temporal module

Storage

Data

Change

output

input

Grouper

group modeling

Analytics

Figure 2.Group data management

Original group level architecture is defined in [13]. The

stated solution introduces the Grouper background process,
which brings additional benefits, whereas the group definition
can be automated and treated dynamically in parallel using the
Analytics module. The original solution required to specify
groups either by the user or the optimizer could do that. And
that is just the point. The optimizer was congested causing
delays.

III. TEMPORAL GROUP REGION ARCHITECTURE

In the previous sections, we have summarized current
temporal approaches by pointing to the limitations. Besides,
we have proposed several extensions covered by this paper,
mostly reflected by the synchronization group extension and
index relocation unit. Section 2 deals just with temporality, in

The International Conference on Information and Digital Technologies 2021

978-1-6654-3692-2/21/$31.00 ©2021 IEEE 51

this part, we propose the Spatio-temporal solution covering the
positional data in the region assignment principle. Thanks to
that, medical data can be delimited by the patient himself,
temporal elements, but the positions of the interest can be
managed, as well.
The proposed architecture overview is shown in fig. 3,
reflected by the data model located in the temporal layer. A
core part of the model is formed by the temporal table
referencing any data update by assigning its change_id
chaining individual changes for the particular object.
Statement_type delimits the data modeling operation (Insert,
Update, Delete). Pointer to the data object is done by the table
identifier (id_tab), attribute or temporal group (data_id)
definition, and row (row_id). Non-current values are grouped
into individual data type categories referenced by the
data_type_cat. Note, that the data type categories are
maintained automatically by the internal transformation
opportunity (implicit conversions). As stated, the model is
spatio-temporal meaning, that the temporal table consists of
the validity time frame, reliability time dimension expressed
by the transactions and spatial assignment managed either
locally by spatial_positions or by dynamic region covering –
region_assignment.

Figure 3.Group spatio-temporal model

IV. DATA RETRIEVAL

Data retrieval perspective is a core element influencing the
whole performance. Optimization and evaluation is a staged
process to get reliable results. Namely, the optimizer has to
check the prerequisites for the processing – semantic and

syntactic check reflected by the access rules, object
identification by the owner, etc., followed by the execution
plan composition. Generally, several plans are identified,
evaluated by the estimated costs originating from the data
table and database statistics. The aim is to select the best
suitable plan for the consecutive evaluation. The execution
process itself can be done either by using sequential scanning
of the data blocks associated with the table or by using the
index layer [20]. Sequential scanning is the most demanding
operation, whereas the data amount to be produced cannot be
evaluated directly. Moreover, individual blocks can be
fragmented, located in multiple physical discs, as well,
bringing additional processing demands. Moreover, some
blocks can be even empty, as a result of extent initialization,
instead of the blocks themselves. Each extent is composed of
the defined amount of data blocks, which allows you to
associate blocks dynamically by limiting the necessity of
allocation any time. The second current solution is based on
using an index strategy to locate relevant data blocks. Namely,
instead of block scanning, a defined index is used to locate
data. Pointers to the direct data are located in the leaf layer,
specifying ROWID value – address of the row inside the block
and data file forming the database. The index is far smaller in
comparison with the whole table, can be optimized [6] [7] [9],
but mostly, it is directly accessible in the database instance
memory. The index itself is defined by the named set of the
individual table attributes or function calls, where the element
order is significant forming the structure [8]. In database
systems, the B+tree index structure is used most often as a
default strategy. B+tree database index is formed by the root
node, internal nodes, and leaf layer pointing to the data. The
limitation of the indexing is just the reliability issue –
undefined table data cannot be indexed, whereas NULL values
cannot be mathematically sorted and evaluated. As
a consequence, commonly, if the query can produce an
undefined or untrusted value, the processing is shifted to
sequential data scanning. In [16] [17], it is solved by
introducing NULL modules, which hold undefined data
directly inside the index by using mapping function [11] [14]
[18]. In comparison with function-based index transforming
undefined values, mapping is done internally with no
additional storage demands. NULL values can be stored either
internally or in an external module interconnected to the root
element.

Flower Index Approach (FIA) is formed by a specific
robust index method usable in case of unavailability of the
(sub)optimal access path. In that case, sequential scanning
would be necessary to perform. As stated in the research paper
[14] [15], if the data fragmentation caused by a huge update
stream or volatility aspect is present, total performance would
be poor, several data blocks would be necessary to be memory
loaded, with no relevant data there. FIA approach is used as a
data block locator, where at least one existing data row is
present. In the leaf layer of the index, BLOCKIDs are present
pointing to the whole block, instead of the data row position.
By loading the data, the whole block is evaluated to focus on
the data.

The efficiency of the Temporal Medical Data Retrieval

52 978-1-6654-3692-2/21/$31.00 ©2021 IEEE

The performance of the index is limited by the structure,
which can, in principle, degrade over time, if several updates
and delete operations are present. The property of the B+tree
is based on the balancing, so the traverse path from the root to
any leaf node is always the same in terms of depth. If the node
inside the index does not hold any data after the Update or
Delete operation, a particular node remains in the index
structure still, because it is assumed that the node will be used
again in the early future. Such definition can have, however,
significant performance impact, if the type and values are
evolving responding to the accuracy and precision. In [14],
database index balancing strategies are defined. Balancing
operation is extracted from the main transaction and is
operated separately consequencing in the ability to approve
the original change operation and transaction sooner. Changed
values are stored either in a separate structure by applying
them by the introduced Balancer background process [14] or
are placed in the leaf index layer with no reflection to the
balancing itself [15].

Thanks to that, it is ensured, that the index is still up-to-
date, even in terms of the structure and tree depth. Based on
the computational study, it has minimal additional data
retrieval demands – less than 1 percent.

Proposed spatio-temporal solution

The proposed solution covers spatial and temporal
perspectives together. Architecture can be split into two
internal regions supervised by the background processes and
available through the public interface. The internal layer
consists of two index types. B+tree index set is formed by the
primary index set, where objects irrespective of the spatial and
temporal dimension are registered and indexed. The secondary
index set is managed by the user specification. It commonly
stores B+tree definition, as well, however, the bitmap,
compressed, hash, or reverse indexes can be covered by such
module, as well. Spatial and temporal dimensions are secured
by the separate index set. These data portions can be processed
and evaluated in parallel followed by the merging operation,
which is done by the bitmap index pointing to the ROWIDs.
Data blocks are then loaded, the result set is created and
provided to the client via a public interface. The internal
B+tree index set does not point to the data blocks (like in a
common conventional system, but the leaf layer references the
bitmapper located in the second interval layer). Fig. 4 shows
the architecture.

Primary index set

Secondary (user)
index set

Multi-temporal
index pointer

Spatial
assignment

bitmap
merger

public
interface

Figure 4.Group spatio-temporal model

V. TIME MANAGEMENT

Common characteristics of current information systems (not
only regarding the medical data perspective) are based on time
spectrum limitation, mostly reflected in the server. Most of the
systems represent just server time definition, instead of the
local client. It was based on the time zones - it was assumed
that the server settings are always correct and provide the
correct values regardless of the time zone parameter setting on
the client-side. Thanks to that, it was ensured that the provided
data were relevant - the server was stored directly in the
medical center, in the local server room. With the spread of
cloud technologies, security standards, and complexity of the
requests, there has been a legitimate demand to move data to
cloud storage, to manage them autonomously [21]. As we
mentioned in the description of the architecture, the amount of
data to be processed is constantly growing, and therefore the
dedicated cloud storage provides a suitable space for growth
and ensuring robustness, performance and security. The
problem is just the time perspective. Based on the study
provided by Oracle, most of the current systems use server
time reflection (sysdate), instead of the client, which can
produce incorrect data (curret_date) for getting the current date
and time. The difference is just the time zone, however, if the
cloud storage is in another region or is even placed in a
different continent, it would be necessary to rewrite the whole
code to reflect the client perspective and time zone. It would to
very demanding and prone to errors. Moreover, the time
evaluation perspective in the medical systém is crucial.
Therefore, it is necessary to find another solution to represent
local client time. In this paper, we propose and evaluate the
costs and benefits of the translation profiles of the SQL.

Solution – SQL translation profile

Our proposed solution covering local client time is based on
the SQL translation profile, which dynamically replaces the
original definition of the server time by the client time zone.
SQL translation profile is commonly set by the database
administrator (DBA) by invoking the CREATE_PROFILE
procedure of the DBMS_SQL_TRANSLATOR package. Each
profile is delimited by its unique name, defined attributes with
specified values, and a pointer to the package method, which
is invoked any time the SQL query is to be executed.

The invoked function is associated with the
ATTR_TRANSLATOR parameter. The translator function
must be packaged with the following two procedures:

· Procedure TRANSLATE_SQL has two parameters
by passing the original SQL query resulting in
providing the second parameter as an output in form
of character LOB value.

· Procedure TRANSLATE_ERROR is called if the
translation ends with a raising exception. It has three
parameters – binary integer value ERROR_CODE,
TRANSLATED_CODE, and
TRANSLATED_SQLSTATE.

To cover the reliability of the medical data processing, the
translation function is associated with the regular expression
calling REGEXP_REPLACE method. The syntax of the
REGEXP_REPLACE procedure is in fig.5 [22]:

· SOURCE_CHAR is a string used as a search value.

The International Conference on Information and Digital Technologies 2021

978-1-6654-3692-2/21/$31.00 ©2021 IEEE 53

· PATTERN is a regular expression with the same data
type as SOURCE_CHAR, respectively transformable
implicitly.

· REPLACE_STRING

· POSITION – positive integer defining the starting
position for the evaluation.

· OCCURRENCE – non-negative value (n) delimiting
the replacement of the n-th occurrence. Value 0
expresses all occurrences to be replaced.

· MATCH_PARAMETERS characterizes the sting
format to be handled. Value “i” in our case defines
case insensitivity.

Figure 5. REGEXP_REPLACE procedure syntax [22]

Implementation

Medical data transformation is done by using the translator
defined in the following code snippet. In case of ensuring
server-client time transformation, SQL translation profile is
defined by the following steps. First of all, the translation
profile has to be created and mapped to the package definition,
which consists of two methods. Then, the session is mapped to
the profile.

Package definition

create or replace package date_translator

 is

 procedure translate_sql(sql_text in clob,

 translated_text out clob);
end;

/

create or replace package body date_translator

 is

 procedure translate_sql(sql_text in clob,
 translated_text out clob)

 is

 begin
 translated_text:=regexp_replace(sql_text, 'SYSDATE',

 'CURRENT_DATE,1,0,'i');

 end;
end;

 /

Note, that the procedure TRANSLATE_ERROR is
optional. If omitted, if any error occurs, translated code is
ignored and the original definition is used instead.
Profile definition and association

begin
 dbms_sql_translator.create_profile

 (
 profile_name => 'MEDICAL_PROFILE'

);

 dbms_sql_translator.set_attribute
 (

 profile_name => 'MEDICAL_PROFILE',

 attribute_name =>
 dbms_sql_translator.ATTR_FOREIGN_SQL_SYNTAX,

 attribute_value =>

 dbms_sql_translator.ATTR_VALUE_FALSE

);

 dbms_sql_translator.set_attribute
 (

 profile_name => ''MEDICAL PROFILE',

 attribute_name => dbms_sql_translator.attr_translator,
 attribute_value => 'DATE_TRANSLATOR'

);

end;
 /

Profile definition and association are covered by three-step

blocks inside the anonymous block execution. The first calls
the procedure create profile delimited by the name. The second
block is based on the changing default parameter
ATTR_FOREIGN_SQL_SYNTAX from the value
ATTR_VALUE_TRUE to ATTR_VALUE_FALSE. Such a

parameter specifies the type of SQL syntax. The third call sets
the ATTR_TRANSLATOR pointer to the defined package
(DATE_TRANSLATOR).

Mapping

alter session

 set sql_translation_profile=MEDICAL_PROFILE;

Mapping is done by associating profile to the session.

Result

Data transformation can be obtained by using V$SQL
dynamic performance view.

select sql_text

 from v$sql

 where sql_text
 like 'select%medical_data%examination_date%';

Figure 6. Transformation results

Analysis of the additional processing demands

Cloud environment can provide scalable dynamic solutions
ensuring the global performance of the system. By transferring
the implemented systems to the cloud environment, reference
of the time zones is highlighted, as well. In this part, there is
an analysis of the additional demands regarding the SQL
translation profiles. Generally, there are two available domains
to be implemented. The first one is simpler in terms of

The efficiency of the Temporal Medical Data Retrieval

54 978-1-6654-3692-2/21/$31.00 ©2021 IEEE

management, whereas the translation is done automatically.
The second approach is delimited by the parse code reference
delimited by the base lines. It will work, however, robustly,
only if the reference parse is always accessible and loaded,
even after the system restart, so the administrator needs to
ensure it, otherwise the processing will be aborted.

Experiments were done in magnetic resonance imaging and
patient monitoring, where time precision is crucial. As evident
from the following figures, the solution is scalable with
minimal additional demands caused by the translation – 10ms.
Note, however, that it is done only once before the hard
parsing, afterwards, just the reference to the already stored
library cache parse is used directly with no transformation, at
all. Fig. 7 shows the original demands, fig. 8 shows the results
by applying translation. Only time demands are slightly
changed, access methods, as well as total processing costs
expressed by the size, processing time, and resource
consumption, remain the same [3]. In fig. 7, server date is
used, whereas fig. 8 uses client site evaluation.

Figure 7. Original statement

Figure 8. Translated statement

VI. COMPUTATIONAL STUDY

Performance characteristics have been obtained by using
the Oracle 19c database system (Oracle Database 19c
Enterprise Edition Release 19.0.0.0.0 – Production).
Parameters of used computer are processor: Intel Xeon E5620;
2,4GHz (8 cores), operation memory: 16GB, HDD: 500GB.

The results of the patient monitoring using magnetic
resonance imaging are used. 1000 patient data were used, each
of them is delimited by the 10 results provided over time. The
brain tumour is detected, located, and monitored. In the first
phase, whole data about the brain are stored, later, just regions
of interest with significant changes between individual results
are stored to optimize consecutive evaluation and limit storage
demands. The average size of the data set is 96 MB consisting
of 20 markers.

In [13] [14], individual granularity types and architectures
are compared technically, mostly reflecting the efficiency of
the data transfer. In this paper, the evaluation study will focus
on the proposed spatio-temporal architecture supervised by the
parallel processing through indexes followed by the bitmap
merger. In comparison with already existing approaches, the
whole data should be treated, there is no robust region of
interest temporal solution. Based on the provided data, just

20% of the data are monitored over time based on the
significance evaluation.

For the study, we used two streams. In the first experiment,
monitoring of just one patient is used. Data, which are not
stored, are replaced by the baseline data results, whereas there
is not a necessity to store them, they do not point to any
change over time, so there is no reason to store duplicate
values. The second experiment deals with the monitoring of
multiple patients with the same diagnosis to compare and
highlight the treatment methods and reached results.

EXPERIMENT 1

As stated, each patient is represented by 10 examination
results, mostly covered by the biannual time-frequency. The
first result set is always stored completely by locating
potential anomalies, which are marketed as regions of interest.
Besides, also the positional neighborhood is maintained to
evaluate the detection progress. Besides, for each evaluation,
Epsilon perspectives are handled to ensure any significant
change is covered properly. Based on the evaluation, the
average data amount to be stored and processed was limited to
the value of 20% reflecting the temporality and spatial
dimension. The significant aspect is just the reliability, such
data amount reduction does not influence the information
values, at all. The data retrieval process is evaluated, reflected
by the storage demands and data retrieval process. Non-stored
values are obtained by the base line and marked by the obtain
time point.

Fig. 9 shows the results comparing temporal group
dimension with the proposed spatio-temporal architecture. Fig.
9 represents the storage demands expressed in MB. In
comparison with individual attribute management, storage
demands are lowered to 45%, thanks to dynamic data
processing and group detection. Just 27% of the storage
capacity is necessary for the spatio-temporal dimension, in
comparison with the reference model – attribute granularity.

Figure 9. Size demands

Fig. 10 shows the processing time demands, which are
lowered, similarly, as well. Namely, attribute granularity
requires 45,74 seconds. By applying group detection, only
37,84 seconds are required, whereas the synchronization
groups are managed as one element stored in the temporal

The International Conference on Information and Digital Technologies 2021

978-1-6654-3692-2/21/$31.00 ©2021 IEEE 55

layer. Proposed group granularity of the temporality and
spatial dimension requires only 25,03 seconds, 3,87 seconds
are used for the non-stored values obtaining from the base
line, which reflects 15,46% of the total processing for the
proposed solution.

Figure 10. Processing time

EXPERIMENT 2

The second evaluated study is based on monitoring several
patients over time by using the proposed spatio-temporal
technique. We have identified the group with the same
treatment category containing 37 patients. Fig. 11 shows the
results reflecting the size demands, which are reduced from
the value 35,5 GB for the attribute level architecture to the
value 16,2 GB for temporal group dimension. By applying
spatio-temporality, 12,72 GB. The main size demands drop
possibility is based on the categorization, it is clear, that all the
patients have the same disease, so the location can point to the
specific region directly.

Figure 11. Size demands

Processing of such data amount is demanding and should be
reduced as much as possible. Spatio-temporal model can
directly locate data of interest, whereas it is just the same for
each patient (with regards to the data neighborhood). Thanks
to that, processing demands are lowered from the value 1712
seconds for the referential attribute granularity to the 1378
seconds for the group detection model (19,5% improvement
by reducing processing time). The proposed spatial model

focuses on just the spatial positions, not only temporality, thus
the time demands are 946 seconds (44,7% referencing
attribute model and 31,3%).

Figure 12. Processing time

VII. CONCLUSIONS

Data efficiency is the main point expressing the complexity,
robustness, and reliability of the whole information system. If
the data are not provided in a defined time spectrum,
consecutive analysis, management, evaluation, and decision
making cannot be done. In medical systems, it is necessary to
manage data of the patient over time, to be provided
immediately, and cover real-time activities. Therefore, the
strict impact should be taken into the whole optimization of
the database processing as an internal layer providing and
managing data. In this paper, we summarize existing temporal
systems, which can cover the whole data tuples and their
changes in the whole time spectrum. The analysis emphasizes
the available granularity levels by forming spatio-temporal
solutions covered by four-level architecture splitting data
based on the time spectrum.

The main contribution of this paper is defined in section 3
proposing spatio-temporal group solutions covering all
existing approaches to reach a robust effective model dealing
with Flower Index Approach, undefined states, etc. The aim is
to ensure the effectiveness of the processing, mostly pointing
to the data retrieval process. The proposed solution extends
the existing index set management by using parallel
processing merged by the bitmap system.

The limitation of the current systems is just the temporality
management, mostly represented by the server time, which
brings problems if the data are migrated to the cloud
environment to propose a robust, reliable, and secure solution.
In this paper, we also analyze the impact of the SQL
translation profiles definition on performance. As evident
from the reached results, the transformation is done only once,
followed by the storing execution plan in the memory cache.

In the future, our emphasis will be taken to the cloud
environment block storage and baseline definitions, by
mapping the SQL statement to the pre-stored parsing process.
Thanks to that, the translation can be hosted internally, which
can lower the additional processing time demands completely.

The efficiency of the Temporal Medical Data Retrieval

56 978-1-6654-3692-2/21/$31.00 ©2021 IEEE

ACKNOWLEDGMENT

This publication was realized with support of Operational
Program Integrated Infrastructure 2014 - 2020 of the project:
Intelligent operating and processing systems for UAVs, code
ITMS 313011V422, co-financed by the European Regional
Development Fund.

REFERENCES

[1] Abdalla, H. I.: A synchronized design technique for efficient data
distribution, Computers in Human Behavior, Volume 30, 2014, pp. 427-
435

[2] Behounek, L., Novák, V.: Towards Fuzzy Patrial Logic. In 2015 IEEE
Internal Symposium on Multiple-Valued Logic, 2015.

[3] Bryla, B.: Oracle Database 12c The Complete Reference, Oracle Press,
2013, ISBN – 978-0071801751

[4] Burleson, D. K.: Oracle High-Performance SQL Tuning, Oracle Press,
2001, ISBN - 9780072190588

[5] Delplanque, J., Etien, A., Anquetil, N., Auverlot, O.: Relational database
schema evolution: An industrial case study, IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018,
Spain, 2018, pp. 635-644

[6] Dostál, J., Wang, X., Steingartner, W., Nuangchalerm, P. , - Digital
Intelligence - New concept in context of future school education,
In: 10th Annual International Conference of Education, Research and
Innovation (ICERI2017), Seville, SPAIN, NOV 16-18, 2017, pp. 3706-
3712, 2017

[7] Eisa, I., Salem, R., Abdelkader, H.: A fragmentation algorithm for
storage management in cloud database environment, Proceedings of
ICCES 2017 12th International Conference on Computer Engineering
and Systems, Egypt, 2018

[8] Feng, J., Li, G., Wang, J.: Finding Top-k Answers in Keyword Search
over Relational Databases Using Tuple Units, IEEE Transactions on
Knowledge and Data Engineering (Volume: 23, Issue: 12, Dec. 2011) ,
2011.

[9] Honishi, T., Satoh, T., Inoue, U.: An index structure for parallel database
processing, Second International Workshop on Research Issues on Data
Engineering: Transaction and Query Processing, 1992.

[10] Janáček, J., Kvet, M. (2016). Sequential approximate approach to the p-
median problem. In Computers & Industrial Engineering 94 (2016),
Elsevier, ISSN 0360-8352, pp. 83-92.

[11] Kriegel, H., Kunath, P., Pfeifle, M., Renz, M.: Acceleration of relational
index structures based on statistics, 15th International Conference on
Scientific and Statistical Database Management, 2003

[12] Kvet, M. (2019). Complexity and Scenario Robust Service System
Design. In Information and Digital Technologies 2019: conference
proceedings, Žilina, 2019, ISBN 978-1-7281-1400-2, pp. 271-274.

[13] Kvet, M.: Managing, locating and evaluating undefined values in
relational databases. 2020

[14] Kvet, M.: Database Index Balancing Strategy, in print (2021)

[15] Kvet, M., Kršák, E., Matiaško, K.: Study on effective temporal data
retrieval leveraging complex indexed architecture, Applied Sciences 10
(2020)

[16] Lien, Y.: Multivalued Dependencies With Null Values In Relational
Data Bases. In Fifth International Conference on Very Large Data Base,
1979.

[17] Mirza, G.: Null Value Conflict: Formal Definition and Resolution, 13th
International Conference on Frontiers of Information Technology (FIT),
2015.

[18] Moreira, J., Duarte, J., Dias, P.: Modeling and representing real-world
spatio-temporal data in databases, Leibniz International Proceedings in
Informatics, LIPIcs, Volume 142, 2019

[19] Schreiner, W., Steingartner, W. and Novitzká, V.: A Novel Categorical
Approach to Semantics of Relational First-Order Logic, Symmetry-
Basel, Vol. 12, No. 10, MDPI, OCT 2020, doi: 10.3390/sym12101584

[20] Vinayakumar, R. Soman, K., Menon, P.: DB-Learn: Studying
Relational Algebra Concepts by Snapping Blocks, International
Conference on Computing, Communication and Networking
Technologies, ICCCNT 2018, India, 2018

[21] https://www.oracle.com/database/what-is-autonomous-database.html

[22] https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions130.
htm

The International Conference on Information and Digital Technologies 2021

978-1-6654-3692-2/21/$31.00 ©2021 IEEE 57

