
Using multi-index database layer in ad-hoc

communication networks

Michal Kvet10000-0003-3937-7473] and Martina Durnekova2

1,2 Zilinska univerzita v Ziline, Univerzitna 8215/1, 010 26 Zilina

Michal.kvet@fri.uniza.sk

Abstract. Current wireless communication in ad-hoc networks requires a so-

phisticated approach for the data location, retrieval, and transfer, to use the con-

nection availability appropriately. Data are commonly stored in the databases

spread across the network or located in each node. This paper deals with the

current techniques of data location and retrieval using the index set. The main

limitation is the availability and suitability of the index for the particular query

request. Our proposed solution is based on the multi-indexing layer, by which

the several indexes can be used to a single query in parallel, followed by the

merging operation using bitmap index mapping. Thanks to the proposed archi-

tecture, data location and efficiency of the whole system can be ensured. The

robustness and scalability of the solution can be reached, as well.

Keywords: ad-hoc network, data retrieval, multi-indexing layer.

1 Introduction

Ad-hoc networks are now widespread almost in any sphere. Communication is done

by applying and identifying individual sources, which can produce or consume data

dynamically. In intelligent transport systems, the significant requirement to ensure

reliability, suitability, and relevance identification can be felt. Produced data amount

is still rising, however, the quality and reliability of the data cannot be generally guar-

anteed. During the communication and data transfer, the total sent data amount is

strictly limited by the time frame, individual elements are in the ad-hoc network.

Thus, it is necessary to optimize the data stream, to identify the most important data

objects and values to be transferred. Data themselves must be optimized in two man-

ners. Firstly, relevant data should be identified to be transferred based on the temporal

and spatial manner. Only data, that have not been transferred to the destination ele-

ment should be handled. The second performance aspect is associated with the data

location, by identifying data tuples physically in the database, by accessing data

blocks, where individual tuples resist. Such provided data are then evaluated based on

reliability and used as input for consecutive decision making [4].

This paper deals with the performance of the data tuple identification using index

structures. Data are commonly stored in relational databases with limited disc and

memory capabilities, thus the loading operation should be optimized, as well. Physi-

2

cally, individual tables consist of the segments (structure definition) and extents orga-

nized as a set of blocks. Data tuples are stored in the fixed-size blocks, which must be

loaded into the memory for the evaluation. Memory Buffer cache structure is formed

by the block matrix. I/O operation is always done by using block granularity. Sequen-

tial scanning naturally does not bring any benefit, whereas it would be too time and

resource-demanding. Whereas ad-hoc network communication is short-term, the as-

pect of time is crucial. Index structures can navigate the processing in an optimized

manner by transforming the linear complexity to the logarithmic (O(n)=> O(log(n))).

This paper aims to propose a new multi-indexing layer, whereas the data demands can

be dynamic and can even evolve. Thanks to that, any requirement can be passed by

the index repository to optimize the data location.

This paper is organized as follows: Section 2 deals with the state of the art, it

summarizes the principles of current relational database access principles with em-

phasis on the access structures and reliability of the index covering. In section 3, our

proposed multi-index solution is defined. The performance of the proposed solution in

comparison with conventional techniques is in section 4.

2 State of the art – index location and optimization

Data retrieval is a complex process starting in the user session, by transferring the

query request to the server process, which is then processed and evaluated by the

instance background processes implementing data identification and location. Data-

base optimizer is there inevitable, whereas it provides the decision dealing the physi-

cal data access.

Query evaluation and data location is a staged process. Fig. 1 shows the core pro-

cessing model of relational data management. Parser performs syntactic and semantic

query analysis by planning transcription of the original query into a set of relational

algebra operations. Optimizer gets the most efficient way to get the result of the que-

ry. The decision is done based on the optimization methods, available statistics. It

selects the best suboptimal query execution plan based on the heuristical approach.

Row Source Generator is the input of the suboptimal plan created by the optimizer. It

creates the execution plan for a given query in form of the tree evaluator. The last step

is the execution itself, according to the execution plan.

Fig. 1. SQL statement processing

Tables

Catalogs

Indexes

Parser

SQL statement

User

SQL statement

Execution Plan set

Execution Plan

Result

Row Source
Generator

Optimizer

3

For the evaluation and performance optimization treated in this paper, the most rel-

evant operation is just the Optimizer stage, which covers the index usage decision.

The index is an optional structure associated with the database table, by which the

data tuples can be easier located in the physical storage. Various structures can be

used, like B+tree, hash, bitmaps, etc. [2] [6], however the most relevant and most

often used type is just the B+tree formed by the root node, internal elements, and leaf

layer consisting of the pointers to the data – ROWIDs.

ROWID is an address to the physical database locating the data file, data block,

and position of the row inside the block. By using the Table Access by Index Rowid

(TAIR) method, data can be obtained optimally in terms of the data access time [2].

Conventional B+tree index type consists of the set of attributes with reflection to

the attribute order inside, whereas it shapes the format. Namely, the order of the at-

tributes or function call results delimits the structure of the index, the first element is

the most significant reflecting the Where condition of the query. Index suitability

evaluated by the optimizer is based on the covering Where conditions of the query

followed by the table interconnection and Select statement clause. Optimally, all data

attribute values are located inside the index, so the database itself does not need to be

accessed. If not, ROWID is used to pass it through the TAIR method. There are, how-

ever, many limitations of the conventional index set in ad-hoc networks. Firstly, it

does not reflect the importance of data reliability. Whereas the undefined values can-

not be mathematically compared [2], they are not part of the index set, thus if the

reliability aspect is to be treated, the whole table needs to be scanned sequentially [6].

It can be partially solved by indexing function results, by which the undefinition is

limited [6]. It brings, however, additional storage and representation demands [5]. In

the following syntax, three table attributes are indexed, delimited by the data trans-

formation using NVL functionality converting NULL value into a specific denotation:

Create index ind on T(nvl(A, ‘x’), nvl(B, ‘x’), nvl(C, ‘x’));

NULL_MODULE has been introduced in [5]. It uses a specific structure outside

the main index, where the undefined values are located. The main index just has a

pointer list to the separate module. Thanks to that, it is ensured, that all data portions

can be always located by the index physically.

Create index ind on T(A,B,C NULL_MODULE);

In ad-hoc networking, it is not just about the reliability and NULL value location

and representation, an important aspect plays the role of the suitability, but mostly

processing time and data location process, which can be delimited by various dynamic

parameters, like occurrence time, durability, spatial positions, importance, etc. [1] [2]

[9]. These aspects should be handled by the index set, as well as the direct attribute

value representation or pointing respectively. As stated, the structure, data amount,

and attribute set specification are dynamic and are defined and influenced by the des-

tination modules. Therefore, the conventional index set delimited by the fixed attrib-

ute set list is not suitable. Namely, if the order of the attributes inside the index is

4

optimal, Index Unique Scan or Range Scan is used, based on the unique aspect of the

provided data. Vice versa, if the order of the attributes is not suitable reflecting the

provided query, either full index is scanned to obtain data (Full index scans methods)

[9] the leading attribute of the index is skipped from the evaluation (Index skip scan)

[2] [9].

In conventional systems, there is the requirement to balance the index directly in

the main transaction ensuring the traverse path from the root to any leaf node to have

the same length. In [5], a discussion about the index balancing strategy is present. The

solution presented there is based on the Notice list, by which the index balancing

operation is extracted into the separate transaction operated internally by the Balancer

background process. Based on the evaluation, it can bring additional benefits of the

data insert, even up to 50% for the processing time [5]. Select operation additional

demands are approximately 11% based on the experimented environment [5].

When dealing with ad-hoc network communications, the time for the data provid-

ing and data exchange is strongly limited, thus the transfer process, as well as the data

location should be strictly optimized to maximize the information values of the pro-

cessed and obtained data. In this paper, we propose a multi-indexing layer, which

removes the limitation of the already existing solutions. As stated, the order of the

attributes for the evaluation is significantly influencing the access method and pro-

cessing demands, and time costs. Our proposed solution uses dynamic indexing with

multiple layers interconnected. In comparison with the auto-indexing presented in

[10] introduced for the DBS Oracle database system, the index set is not changed over

time, whereas we assume, that the system is so dynamic, that the costs for the index

construction would lead into the process merging with no relevant output – the time to

create new index is too high in comparison with the available time for the communi-

cation itself.

3 Solution

As stated, in the ad-hoc network, the efficiency of the data retrieval and transfer is a

crucial process delimiting the whole system's usability. Conventional index set super-

vised by the administrator analyzing workload does not bring suitable benefit, where-

as it is too dynamic. Similarly, auto-indexing technology supervised by the autono-

mous database in the Cloud environment is not feasible mostly due to the high rate of

structure and rate changes [3]. Therefore, in this paper, we analyze the impacts and

benefits of multi-layer indexing to ensure performance.

3.1 Monitored aspects

The conventional database is delimited by storing only current valid data, by replac-

ing the original state with the new version, if the Update operation is executed. Alt-

hough original data tuple can be found in the transaction logs temporarily, it is not

part of the system architecture, it is not part of the core database, thus the process of

historical data evaluation would be too demanding, whereas all transaction logs would

be necessary to be scanned and evaluated sequentially. Temporal database architec-

5

ture extends the perspective by covering all temporal dimensions in the core system,

either located in the main table [2] (by extending the object definition itself) or by

proposing multi-level architecture [6]. One way or another, intelligent information

systems and ad-hoc communication networks always need to store data temporally

with the reflection to the historical data, current valid image, as well as future plans

and perspectives. The first covered aspect is temporality, which can be modeled using

three dimensions (history, current states, and future) with various granularity aspects

(object [2], attribute [6], group [7]). The second covered aspect is just the spatial di-

mension modeled either by the positional data or by the affiliation to the region. The

region is commonly based on space differentiation and allocation to detect future

space of interest. Note, that generally, it can be denoted dynamically based on current

conditions and can evolve. The third aspect is expressed by the data quality. Several

undefined values can be present in the system, which can be evaluated. NULL value

representation itself does not endorse the problem complexly, whereas it can originate

from various reasons, like delayed value, the value provided from non-secure source,

value out of expected range, non-verified data tuple provided from the new element,

which has not been tested, yet, etc. In the proposed solution, the original NULL value

is replaced by the set of reasoning values, which are covered by the separate module

located in the instance memory (NULL_ORIG_MODULE) of the static node, to

which individual states can point. This module is started during the mounting process

of the instance loading and is resistant during the instance state is OPEN. Physically,

the definition is stored in the data dictionary and pointed by the control file. It can be

created and associated with the following commands:

Alter system create NULL_ORIG_MODULE scope={memory | spfile | both};

NULL_ORIG_MODULE can be created directly in the running instance, or speci-

fied in the instance parameter file (spfile), or can be applied in both systems directly.

Note, that if the spfile option is used, a particular module will be launched just after

the instance restart.

Then, individual NULL value meaning and representations can be registered:

Alter NULL_ORIG_MODULE

 {add | remove | stop} null_type_identifier [meaning]

 scope={memory | spfile | both};

NULL_ORIG_MODULE element has an associated integer value as the identifier,

which can be specified either automatically (for the create (add) operation) or manual-

ly for other operations. It offers three option usage – to add a new node with the spec-

ified meaning, to remove an already existing element, or to stop it temporarily. Re-

move operation of the existing node can be enhanced by three options – restrict,

remap, dangling. Restrict option does not allow to remove the element if at least one

state points to that. Internally, several occurrences for each type identifier are stored

in the data dictionary, so the system can easily evaluate, whether it is possible to drop

it or not. Remap option takes all of the pointers, which are associated with the element

6

to be dropped, and remaps them to another existing element part of the

NULL_ORIG_MODULE. Finally, the Dangling option of the undefinition aspect

removes the element from the system, so the existing pointers are still there but are

not associated with any element expressed by the dangling state.

NULL_ORIG_MODULE architecture is shown in fig. 2. Database instance is re-

sponsible for the NULL_ORIG_MODULE creation as part of the instance memory,

supervised by the NULL_MANAGER background process. Thanks to that, original

NULL values are replaced and can be part of the indexes as a pointer layer. It is locat-

ed outside the main index, interconnected to the root index element.

Fig. 2. NULL_ORIG_MODULE

3.2 Database dimension

The temporal database is a widespread solution dealing with state monitoring over

time. Various granularity perspectives can be used. In object-level temporal architec-

ture, object definition itself is extended by the time positional data expressing the time

frame. If just one temporal dimension is used, the created model is uni-temporal. In

our proposed solutions dealing with the un-trusted communications inside the ad-hoc

network, the three-dimensional temporal model is used to identify individual states.

Validity expresses the time frame, during which a particular data tuple was identified

as valid, defined by the associated attribute values. The second time element reflects

the transaction time, which delimits the original Insert operation to the whole system

(global operation). The third timestamp expresses the local operation – record acquisi-

tion time during the data transfer. Optionally, the proposed solution can be extended

to manage the processing time, as well, whereas the received data do not need to be

evaluated immediately, but can be shifted into the input queue. In such a case, the

delay between received time and processing time can be handled and consecutively

optimized.

 In the above principles, there is an assumption, that the provided data are relevant

and reliable. Undefined values are expressed by the pointer denotation. Honestly, it is

not possible to update the existing state as a correction, whereas the original value

would be replaced. To propose a robust architectural model, another time element has

to be introduced covering the versioning. In principle, it is always true, that the cur-

rent object state version is always considered correct. Later, however, this version

may be replaced by a new image. Therefore, there is an assumption, that the last in-

serted version is considered to be correct at the given time. In the ad-hoc network

environment, individual nodes can hold irrelevant data tuples, which were later cor-

rected. In such a case, the communication can be bi-directional and even the destina-

transformationNULL value

pointer layer

NULL_ORIG

_MODULE

Instance memory

7

tion node can invalidate data from the provider if it holds newer data versions. Fig. 3

shows the principle of tuple identification. In the first phase, object versions are iden-

tified, expressed either based on the time point of the data origin or the sequence

number, which must be, however, synchronized across the whole network, otherwise,

the reliability issues can be identified. Data transfer is done only if the newer data

version can be provided [7].

Fig. 3. Data transfer – reliability and usability

3.3 Architecture

The architecture of the whole solution is based on multiple interfaces. It consists of

several internal interfaces, which can be categorized. The first type is based on time

elements specified in 3.2. For each granularity representation, a separate interface is

present. The second category covers the spatial definition, similarly modeled by two

streams – direct positions and region association (reflecting the time perspective). The

third module covers the undefinition by the interface. And finally, the last category is

covered by user-defined access types to locate relevant data. The architectural model

is in fig. 4.

Fig. 4. Architecture - interface

Physically, the implementation is done by the group level temporal architecture, by

which the synchronized groups are processed as a single group (attribute), so the stor-

age demands are lowered – the temporal layer covers the whole group, not individual

attributes separately.

3.4 Indexing

As already stated, multiple spheres covered by the spatial attributes, temporality,

and user definitions are present. For each element, an index structure is present. The

principle of the relational system indexing supervised by the B+tree index structure is

used with the following extensions. Each B+tree consists of the root element inter-

connected with the undefinition module (NULL_ORIG_MODULE). Internal nodes

Source

node
Destination

node

(1) data request

(4) data transfer

(2) vesion

(3) invalidate

data

transfer

External

node
Public

interface

Categorization

+ weighting
Index set database

8

reference traverse path, however, the balancing itself is done outside of the main

transaction. The leaf layer does not deal with the ROWIDs pointing to the database

repository – file, block, and position, instead, the Multi-index Inter-Stitching layer

(MIS layer) is referenced. Thanks to that, several indexes can be evaluated for a sepa-

rate query. The results of the pre-index processing are shifted into the MIS layer,

where the bitmap index is used. The inputs are delimited by the indexes themselves

holding the value 1, if the condition is evaluated as TRUE, holding 0 otherwise. Such

binary operation applied to the multiple indexes is fast to be applied and processed.

The result of the bitmap processing is a list of physical pointers to the database –

ROWIDs. Thus, the index itself does not point to the physical repository, it is just part

of the MIS module. Thanks to that, if the database repository is moved, there is no

necessity to reconstruct the index set, only bitmapper is re-initialized and re-

calculated.

Fig. 5 shows the architecture in the index point-of-view (multi-indexing layer). In-

dividual indexes are passed as inputs to the MIS layer, which provides a list of

ROWIDs in the output. To improve the performance, the output list can be grouped

based on the locations by differentiating physical discs, if multiple storage objects are

available.

Fig. 5. Bitmapper

4 Performance evaluation

Performance characteristics have been obtained by using the Oracle 19c database

system based on the relational platform. For the evaluation, a table containing 10

attributes originated from the sensors was used, delimited by the composite primary

key consisting of two attributes. The table contained 1 million rows. The environment

consisted of 100 vehicles with the limited communication times

Experiment results were provided using Oracle Database 19c Enterprise Edition

Release 19.3.0.0.0 - 64bit Production. Parameters of the used computer are:

 Processor: Intel Xeon E5620; 2,4 GHz (8 cores),

 Operation memory: 48 GB DDR 1333MHz

 Disk storage capacity: 1000 GB (SSD).

Query

definition Bitmapper

Client

temporal

spatial

database

user defined

index set

...

Server NULL_ORIG_MODULE

9

An evaluation study has been done in the real transportation environment covering

ad-hoc networks. Obtained data requests were based on the relevance to the transport,

time elements, and usefulness. Namely, the aim is to get the most valuable data sets

based on the affiliation to region, route, and time. We have compared four architec-

tures. Model 0 does not deal with the secondary indexes, only spatio-temporal refer-

ence as an index is used. Model 1 is delimited by the static index set for each refer-

enced layer - internal interface (e.g. temporal, spatial, regional, etc.). Model 2 limits

the data amount only to the relevant tuples for individual requests. Thus, scanning the

whole table is optimal, no additional tuples are present. Internally, it is done by the

temporary table for each vehicle. It is evident, that such architecture is not feasible in

the real environment, we just want to point to the potential optimal solution to deter-

mine the impact of the proposed architecture, as well as additional cost demands.

Model 3 covers the proposed multi-indexing solution processed dynamically using the

registration. As evident, the proposed multi-indexing model is robust, can cover the

reflection of the suitability. Data retrieval is dynamic, processing can be done

in massive parallelism, so the processing and data transfer can be done in a fast man-

ner [7] [8].

Fig. 6 shows the results of the processing time. It is expressed in the percentage.

By using just the primary key, data must be mostly obtained by using sequential scan-

ning. It reflects 100% of the demands. Internal interface lowers the demands to

40,43%. In that case, the optimizer selects one of the indexes, which is used for the

data retrieval using the ROWID. Model 2 provides an optimal solution, the index set

is not relevant, whereas the inner table contains just the required data, so the sequen-

tial scanning is optimal (in our case, no data fragmentation is present). In that case,

processing time demands are 26,43%. In the complex architecture, Model 2 would

provide the optimal solution. Our proposed multi-indexing architecture (Model 3)

reflects the result of 28,31%. In comparison with Model 2, multiple indexes can be

used, followed by the bitmap merging in the second phase. As clear from the fig. 6,

the additional demands are only minimal, however, such a solution is robust and sus-

tainable.

Fig. 6. Processing time demands (%)

10

Note, that the experiments were executed 10 times reflecting the defined attribute

set forming the selection operation. 10 regions were used, data of two ones were re-

quired with various importance rates – 100% and 60% for the second [5].

The second evaluation stream is based on the limiting data amount to be trans-

ferred. In the first part, the processing time is limited to the value of 1 second. In that

case, for Model 2, all required data are obtained. Model 3 was able to transfer only

95,43%, the first region data are processed in the first phase, they are always deliv-

ered completely. Model 0 does not use an additional index set, so the available data

amount was just 32,12%. Although Model 1 provides all suitable index sets, they

cannot be evaluated in parallel, just one of them can be selected, thus, based on the

time limitation, just 73,57% of the required data was delivered. Fig. 7 shows the re-

sults in a graphical form.

Fig. 7. Processed data amount (%)

We have also experimented with the efficiency of the transfer evaluated as the pro-

portion of the data amount to the total available time. In Model 3, the correlation is

almost linear, if the time is limited to the value 500ms, the required data amount pro-

portion is 48,12% when limiting the data to the 250ms, the data amount is approxi-

mately 21,89%. Note, if the time availability is lower than 75ms then the data availa-

bility is almost zero – fig. 8. The reason is based on the data identification, query

definition, and data transfer in the last phase.

11

Fig. 8. Non-processed data reflecting the time limit

5 Conclusions

Data efficiency is a complex requirement in any intelligent information system. Data

retrieval in an ad-hoc network has to be strictly optimized, whereas the availability

time sphere is low. Existing conventional index approaches do not solve the problem.

Dynamic index specification using the auto-indexing approach is not suitable, as well,

whereas the data and query structure is so dynamic, that the system would mostly

point to the index definition and management. Our proposed solution is based on the

multi-indexing layer, which can be processed using internal interfaces in parallel.

Individual data requests are categorized based on the importance, so the most relevant

data are processed in the first phase, whereas the available time for the transfer is

limited. The provided solution is based on the B+tree index layer, where individual

leaf nodes do not point to the physical data blocks themselves. Instead, they are rout-

ed into the second layer, by which the bitmap can be applied. Thanks to that, several

indexes can be processed in parallel, thus the processing evaluation can be done more

effectively. Data synchronization is present in the bitmap layer by pointing the pro-

cessing to the physical data blocks to be loaded.

In the future, our emphasis will be on the dynamic block structure size definition

based on the data relevance. There is an assumption, that such implementation can

provide a better performance, whereas the I/O operation demands are lowered. The

dynamic balancing in such a manner would be important (move data across multiple

block size levels).

Acknowledgment

This publication was realized with support of the Operational Programme Inte-

grated Infrastructure in frame of the project: Intelligent systems for UAV real-time

operation and data processing, code ITMS2014+: 313011V422 and co-financed by

the European Regional Development Found.

12

References

1. Abdalla, H. I.: A synchronized design technique for efficient data distribution, Computers

in Human Behavior, Volume 30, 2014, pp. 427-435

2. Burleson, D. K.: Oracle High-Performance SQL Tuning, Oracle Press (2001), ISBN -

9780072190588

3. Jakóbczyk, M.: Practical Oracle Cloud Infrastructure: Infrastructure as a Service, Autono-

mous Database, Managed Kubernetes, and Serverless, Apress (2020)

4. Jánošíková, Ľ., Kvet, M., Jankovič, P., Gábrišová, L. (2019). An optimization and simula-

tion approach to emergency stations relocation. In Central European Journal of Operations

Research, ISSN 1435-246X, Roč.27, č.3 (2019), pp. 737-758.

5. Kvet, M.: Database Index Balancing Strategy, in print (2021)

6. Kvet, M., Kršák, E., Matiaško, K.: Study on effective temporal data retrieval leveraging

complex indexed architecture, Applied Sciences 10 (2020)

7. Kvet, M., Matiaško, K.: Analysis of current trends in relational database indexing, confer-

ence SST 14-16 October 2020, Osijek, Croatia (2020)

8. Skrinarova, J., Povinsky, M.: Parallel simulation of tasks scheduling and scheduling crite-

ria in high-performance computing systems, Journal of Information and Organizational

Sciences (2019)

9. Steingartner, W., Eged, J., Radakovic, D., Novitzka, V.: Some innovations of teaching the

course on Data structures and algorithms. In 15th International Scientific Conference on

Informatics (2019).

10. https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/autonomous-auto-

index.html

