Monitoring of parking space occupancy via UAVs
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Abstract—The research aims to analyze, design, and implement
a prototype system for recognizing the current occupancy of
the parking lot using visual input from an unmanned aircraft.
The experimental solution should also be able to detect, identify
and recognize the vehicle registration number and store it in a
database. The character recognition process itself is done sepa-
rately from the vehicle park occupancy analysis. The recognized
license plates are stored in a database, which keeps a record of
occupancy at a given time. The technique for defining the area
of interest was deployed with a subsequent analysis of the object
in the area. The overall success of the applied method exceeded
95 %, which indicates the reliability of the implemented method.

Index Terms—computer vision, digits, character recognition,
OpenCYV, parking, Python, vehicle detection

I. INTRODUCTION

Sight belongs as the main information resource for humans
and animals as well. Although shape, colors, light, and many
other recognitions are seeming to be easy to categorize, find
similarities, and recognize by their nature, we learned them as
we got older.

These processes become natural for us as we use them every
day and every minute of our life. Computer vision is nowadays
used in vast fields of use. From statistics through security to
development. Computer vision is a fast-growing field not only
in the development of artificial intelligence but already applied
on a day-to-day basis.

Characters and number recognition are essential for humans,
as they allow us to pass and maintain data. Although this data
does not have the same meaning for computers as they have for
humans, the goal of this work is to help human beings. When
combined with object recognition there is the prospect to help
recognize free parking spots and ease parking in locations with
limited capacity and high visit rates. Solution may be used
even for the electric vehicle [1] charging spots.

II. ANALYSIS OF DETECTION AND RECOGNITION
PROCESSES

A. Edge detection

The basics of every image processing program in computer
vision are based on the recognition of different colors, objects,
lights, or changes between given images. With this knowledge,
we need to determine the fundamentals of the approach to
solving a problem we are dealing with. Detecting edges
is one of the most reliable approaches to finding borders
characterizing areas, which represent some specific objects and
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what is background in frames where we run edge detection.
Exist more options on how to detect edges.

1) Zero crossing edge detection: The theorem of edge
detection based on crossing zero is to find the point where
the intensity of pixels in the image given for analysis changes
rapidly. This approach at first appeared as a filter for frequency
diagram analysis, but since can be considered after using
correspondent kernel for image transformation, change of the
color can be represented as frequency by calculating 1st and
2nd derivation [2] of given the image.

2) Perwitt operator edge detection: In images we stan-
dardly detect two-dimensional(2D) coordinates system. Gen-
erally, Prewitt operator [4] uses a system of 3x3 matrix in this
2-dimensional field.

Since this method is based on relatively simple mathemati-
cal calculations, seems logical, that fast processing speed and
lower computation requirements will be the main advantage.
Yet there is a disadvantage in form of noise sensitivity which
caused higher requirements on input image quality.

3) Sobel edge detection: The main difference between the
Perwit operator and Sobel [5] operator is the usage of 2nd
power in calculations for mask application square root of
(Gx? + Gy?) where G represents horizontal representation
of coordinates and Gy vertical then. GG represents gradient.

The main advantage in comparison with the Perwit operand
is less noise sensitivity, thus the output can be relatively
cleaner in comparison with some cases of not-so-good quality
input data.

B. Canny edge detection process

The process developed by John F. Canny in 1986 for edge
detection became widely used mainly in Python programing
language and C++ since was rooted in the OpenCV library for
computer vision. The process itself contains 5 main steps [6]:

¢ noise reduction,

« gradient calculation,

e non-maximum suppression,

o double threshold,

o edge tracking by Hysteresis.

C. Detection and recognition of objects

Since we start recognizing and detecting objects in frames
from the bottom, it would be appropriate to look at it in a more
complex way. We will look at more approaches for detecting
objects such as the utilization of trained neural network.
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D. Detection of objects via deep learning

To understand the term deep learning we must suppose a
gain of certain ability to computers. Deep learning as part
of machine learning is a process when computer machines
achieve entry-level artificial intelligence. Algorithms can rec-
ognize patterns after the training process were made. This
means providing a dataset with marked objects we want to
recognize. The algorithm then trains their ability to recognize
given patterns through similarities in samples. Such algorithms
[8] include:

o Region-based convolutional neural network (RCNN)

o Faster-RCNN

o Single shot detector(SSD)

¢ You only look once (YOLO)

o Support Vector Machines (SVM)

As a part of this research, we will take a closer look at
YOLO. YOLO algorithm is assembled on the principle of
using only one forward propagation on a neural network to
detect the object. As a result, most of the time quicker results
in comparison with other CNN algorithms but with the cost
of higher error occurrence. Despite that, there is still a good
error/speed ratio with results, and is widely used for his still
sufficient quality of results and speed. The input in YOLO is
divided into an SxS grid. The appearance of the object center
in one of the grid cell gives responsibility for recognition to
these cells. As Du [7] explains, each grid cell predicts B
bounding boxes, confidence scores for those boxes, and C'
class probabilities of the grid. These predictions are encoded
as an SzSz(Bxzb + C) tensor. Nowadays exist an updated
version of YOLO, in particular, YOLOV3 is in use.

E. Detection and recognition of numbers

It became a common practice to recognize numbers or
letters in the image, extract and save them in digital form for
the next processing. This is quite a useful method. Nowadays
is a common practice to interact with the system using this
feature.
1) Optical character recognition: Optical character recog-
nition (OCR) aims to extract machine-encoded characters from
digital images by applying electronic conversion. Pytesseract
library seems the best option, as the solution will be using the
Python programming language, [9] for OCR not only to be
used on characters like letters but also numbers. The whole
process is based on a few following steps [10]:
e Scanning.
o Segmentation.
e Pre-processing:
— Resize.
— Convert color.

o Feature extraction/localization:
— Highlightning characters.
— Suppressing background.

¢ Recognition.

The process itself was optimized for common use in various
sectors as the private sector and public sector. Pytesseract
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library was created as an OCR tool for Python. The main
function is to mimic the ability of humans to read text from
any given image.

FE. Recognition of digits with Convolutional Neural Network

We will take a closer look at the use of CNN to recognize a
digit. Many approaches to CNN are applied using TensorFlow
which is a neural network library in Python. The method we
will describe [11] uses a different combination of hidden layers
for the process of analysis.

After gray scaling, 5 layers are applied. Here are the
responsibilities of each layers:

1) Feature extraction from data input.

2) Convolution operations accomplishing.

3) Reduce the number of constraints and output informa-
tion.

4) Dense layer (connect layers to determination layer to
reduce over-fitting).

5) Determination of digits number (0 to 9).

G. Digit recognition based on template matching

Using template matching methodology for the identification
of numbers brings some advantages like the utilization same
format in a license of vehicle registration. This brings two
ways how to look at the problem. The first can be a template
of a rectangle object with a blue strip on the left side. The
second can be a template of font, which is normalized for
all identification pates. Using a font template seems to be a
better fit for the situation with template matching considering
a bigger variety of countries have the same fonts but a similar
sequence of format. This brings to mind the possible procedure
of detection. The sequence of steps for template matching were
presented by Roy et al. [12]:

1) Input of image.

2) Plate recognition (only plate not digits).

3) Skew correction.

4) License plate extraction.

5) Segmentation.

6) Digit classification — recognition.

Plate recognition can be done based on the color scheme
of plates since all have the same format. For skew correction
is possible to apply a rotation matrix to determine the same
viewpoint as a template has. This brings us to segmentation
which is used for the determination of the position of digits
and separate areas for digit classification. Roy et al. [12] used
during experiment 180 colored images however with different
quality. This could affect the result of 88% of successful
recognition.

H. Comparsion of digit recognition algorithms

Now we can have a look at the comparison of those
algorithms. If we take a 7-segment approach, though has been
accurate, it is not possible to apply such an approach to
different fonts henceforth we cannot choose this approach in
our problem since there is a necessity for the ability to detect
other than 7-segment numbers. The ability to detect digits with
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CNN seems to be very accurate with a success rate of 97%,
however, the amount of data used to create such an accuracy
indicates the necessity of a large dataset and the time needed
to learn a model of such ability. Template matching does not
require of large dataset and can perform on live video as Roy et
al. [12] describe it as a fundamental technique to license plate
recognition(LPR) but with the success of recognizing attacking
88% leaves the lowest percentage of possible algorithms able
to use on our problem. This leaves us with OCR. Method of
optical character recognition shows a high level of successfully
recognized digits (99%) and does not require building and
training model and such a large dataset is not necessary either.
OCR can also be applied to video-stream and therefore can
be run simultaneously with other processes. This is the reason
we choose to apply this method furthermore in this research
as the best fit for finding the solution to our problem.

III. MATERIALS AND METHODS

In this section, we focus our attention to design and
implement a user-friendly and universal solution based on
the recognition of the object. This process also with digit
recognition helps us to maintain an overview of the selected
parking lot. The main goal is to design a system running on
a server able to process data from input and not a system
running directly on the UAV itself.

A. System restrictions and requirements

We aim for a system able to process video input with
full high-definition resolution (FHD) and with 30 frames per
second. For testing purposes a video was captured via DJI
Mavic mini personal drone. This particular model involves a
sensor size of 12 megapixels and with 1/2.3” CMOS sensor.
The default format of the output is mp4. Server handling
process of recognition and evaluation run on Intel Xeon ES5-
2630 with 2.20GHz and 6 cores together with 16GB of RAM.
Maximum disk space represents 400GB. As we can see, this
much computing power grants us much more freedom in way
of solution design. No significant computing power restrictions
had to be made since there is no need to run the whole software
solution on the UAV itself. In addition, video as a source of
analysis also must keep up with some conditions. To begin
with, light is according to assumption most significant factor.
Video input with the poor light condition will cause more
errors. Meaning effort for best visibility is a crucial crite-
rion for correct recognition and classification. This restricts
the usage of our solutions only during daylight or in well-
lightened places without a deficit of light. A possible angle
for maximizing of input quality can be seen in Fig. 1.

IV. IMPLEMENTATION OF EXPERIMENTAL SOLUTION

We created the proposed solution of software implementa-
tion as the web application with optimization primarily for
desktop users, solutions were inspired by the work of authors
[13], [14]. The web solution is undoubtedly a more friendly
approach to a wider range of users. We can list the pros of
this approach:
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Fig. 1: Capturing the license plate of an incoming vehicle.

o No need for installation of software on the user side.

« No necessity to own machine with higher hardware spec-
ification in cases of more demanding software solutions.

e Can be opened on all platforms that support web
browsers.

o Accessible to the user on every device with connectivity.

On the other hand, we had to suppose a stable internet
connection. This seems to be a disadvantage. Without a con-
nection to the internet, the software solution can not perform
any action.

1) Detection of the license plate position: For the imple-
mentation of the CNN model for detection of the position of
the license plate, we had to create a data file, .csv in our case.
With all this data representing a dataset with which help we
will get the information we demand. To fill this file with real or
in other words, meaningful data, we had to manually specify
an area of interest. A free online dataset was found with XML
files containing data about the position of the license plate.

A. Labeling

To label additional images we use the open-source graphical
image annotation tool Labellmg. Output from this process is
an XML file with the set structure.

B. Data transformation

To get from XML files data in order to save as .csv we
created Python script. Its whole functionality can summarize
as follows: At first, all XML files are loaded. Then we define
the structure of the file we will output all data, after which
follows the loop function. The purpose of this function is to
pull out data about box coordinates from all XML files and
save it to our output file.

C. Training of model

First, we need to load data from the file. The next step
will include preprocessing during which we save chosen
information to arrays. Data in the array are already resized
to fit the training process and also normalized. After pre-
processing, the training and saving model can be reached.

For training, we use the Keras API of Tensorflow. More
specifically, the function InceptionResnetV2 was utilized. It
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is a combination of two functions for model training as the
name suggest — function Inception and function Resnet. This
function returns the Keras image classification model pre-
trained on ImageNet. The model was trained in two iterations.
Each iteration was set for 100 epochs with batch size 10. We
managed to limit validation losses as well as time in the final
10 epochs in comparison with the first 10.

D. Predictions with model

As the first step, we load the model and then parse some
data to it, in this case, the image. It is necessary to remember
the size of images passed to the model during the training
phase. Not because of model would work only on those images
but because for correct functionality, we must pass the same
size input as was learned and expected to handle. Therefore,
after loading, the second step is preparation or so-called pre-
processing, after which we call the model itself to make
predictions on the input we provided.

E. Reading of symbols

Once we get predictions of the location of a licence plate
we can proceed to the process of extraction of character in the
labeled area. To do so, we apply OCR.

To make this engine functional, a path to an executable file
must be defined to access the functionality of the engine. This
allows us to provide a callback on the engine in proposed
script. Nevertheless, for correct functionality, the only image
of the labeled area must be provided if we do not wish to
finish the program with empty output or with an unexpected
CITOr.

As database for this project, we choose Firebase real-time
database — Firestore. This feature keeps us updated on data
samples from testing functionality for this project.

F. Parking lot capacity monitoring

In this section, we describe the process behind monitoring
the capacity of the parking lot. The technology used to
accomplish such a goal was used in a much simpler way than
the procedure behind license plate recognition and reading.
After first attempts to use a similar process also for this case,
there were some issues:

o To recognize the object of a vehicle we would need a
massive dataset which would consist of frames of vehicles
from a so-called bird’s eye view.

o Frames of different light conditions would be necessary.

o Frames would have to be from the same high above the
surface.

Considering all this information we gained, the search for
alternative approaches to these issues continued. In the final
version, we decide to promote much faster and hardware more
low-cost solution. The area of interest was marked, and pre-
processing of the image followed. In the final solution, we
monitor the density of pixels in areas defined by us which
allows us to perform fast and reliable parking lot capacity
monitoring.
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G. Labeling areas of interest

To gain the ability to count parking slots, a definition of
those areas must be made. The solutions utilizes the Python
Pickle module which provides a serialization function. With
this, we can define our areas and store them for video analysis.
The whole process consists of the following steps:

1) Define size for the areas which are subsequently stored

in the array.

2) Catch input from mouse being clicked.

3) Append area predefined size to point where was clicked

by the mouse.

4) Remove position saved in an array.

H. Counting vehicles

Once prior functionalities are defined, we can describe the
functionality of the process counting process.

From the pickle file, we access the saved positions of areas
of interest, prepare positions, and call the function which will
load the video and prepare it accordingly. Preparation means
loading and perform the next steps:

1) grayscaling,

2) blurring,

3) thresholding,

4) dilatation,

5) median(Gaussian) blur activation,

6) checking slots.

These steps have to be in this order to secure accurate
functionality. Grayscale is necessary since we need to have all
frames in the same color palette. When we can get only two
colors (black and white) we can categorize them, or a better
expression would be to set value for these colors. Border can
be set to define which values represent one and which is the
second color.

Blurring helps during the color recognition process since it
does what it says. This process prevents unwanted behavior,
especially borders, where few close areas have a high differ-
ence in the value of color and could split one object.

The next step is thresholding, which is an expression for
the assignment of the pixel value with the threshold value
provided. In thresholding, each pixel value is compared to a
defined threshold value. If the pixel value is smaller than a
threshold, it is set to 0, otherwise, it is set to the maximum
value, 255.

When we have the value specified, we apply these changes.
Prior to the final output, we apply the dilate functionality of
OpenCV. Which, simplify said, is the filter which can connect
close areas of high similarity to make bigger contours and
unite them to one area. After all this, we apply Gaussian Blur
to smooth the image and in the finale, the human eye will see
it more as clusters of pixels than objects or contours of objects
as we can observe in Fig. 2.

This enables to determine in the final output, how much
white we will consider as the occupied slot. During the testing,
this value was set to 620 pixels. If there is too much white
pixels, the slot will be considered occupied and the counter of
free slots will be updated.
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Fig. 2: Output after Gaussian Blur.

TABLE I: Success rate of occupancy recognition.

Video  No. No. of detected Occupied Free Success
no. of slots  vehicles slots slots  rate

#1 21 3 3 18 100%
#2 19 6 7 13 85.7%
#3 21 7 8 13 100%
#4 46 45 46 0 97.8%

Areas of interest for pixel counting will be represented by
our definition of rectangles as represented in Fig. 3.

Fig. 3: Labeled areas of interest.

V. EVALUATION

The main testing phase of parking lot capacity was made
on videos from areas of the Technical University of Kosice.
Two parking slots were chosen with more angles of capturing.
After that, we defined areas of interest and run recognition.
Overall success rate exceeded 96% as we can see represented
below in Tab. I

These results prove the proper way of the selected approach.
In one case we had occupied one slot more than were vehicles,
but this was caused by cross parking of one vehicle. However,
the detection of occupancy of those slots (even if it was only
one vehicle but blocks two slots) proves a high success rate
in the detection of occupied parking slots.

In the case of license plate detection and symbol recogni-
tion, we proceed series of sets of tests. The overall number
of images used for testing of success rate was 17 and we
evaluated 4 categories.
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Firstly, we evaluated predictions of the successful localiza-
tion of license plates. For success, in this case, we consider
every area labeled which contains at least 50% of the license
plate from the image. The next evaluation was more difficult
because we consider only labels with the whole license plate
inside the labeled frame. When we manage to get all those
parameters, then the initiation of the OCR algorithm came
into place. Those cases where OCR was able to extract some
strings could be considered valid output. The final and most
complex solution with a result of 59% means cases where
from 17 initial inputs we got correctly read the string from
the license plate.

In the testing process of license plate reading, we use
various images where in a few of them license plate was of
high quality and take a significant portion of the whole frame.
In others, the license plate was smaller and therefore quality
after extracting the license plate even in successful attempts
OCR could not read character due to drop-off quality in the
labeled frame.

VI. CONCLUSION

The research presented in this paper was focused on the
detection of free or occupied parking lots using UAVs. Sub-
sequently, from the input video, the system locates the license
plate and allows the detection of its alphanumerical characters.
Prior to the design and implementation, the analysis of the
detection and recognition processes was carried out. This
knowledge was put to use in both the design and implemen-
tation phases. The OCR technique is used for the recognition
of the digits. For the detection of the parking lot’s state, the
region of interest is used. This is based on the presumption
that the UAVs will fly to a fixed position.

Problems we were dealing with have high potential in the
field of monitoring parking lots in private but also public areas.
Testing proved the experimental solution to be fully functional.
The average efficiency of parking lot monitoring exceeds 96%.
However, the efficiency of the license plate prediction, in terms
of its localization, was 69,25%.

In future research, it is expected that the UAVs will be used
to capture the vehicle and parking lot while providing multiple
regions of interest. Moreover, detection of the automobile
and various other types of vehicles may be improved, e. g.
using neural networks. Moreover transfer of data [16] may be
optimized using novel IoT (Internet of Things) protocols.
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