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Abstract. A real problem use-case represents a challenge. This is usually trans-

formed (reduced) to a model. We expect the model to give a response/solution 

which is (at least in a degree) acceptable/meets the challenge. Moreover, this 

challenge-response understanding has two levels – both the real world situation 

and model situation contains the challenge side (input, query, problem ...) and the 

response side (output, answer, solution ...). We present a formal model of ChRF-

Challenge-Response Framework inspired by our previous work on Galois-Tukey 

connections. Nevertheless, real-world reduction to models needs some adaptation 

of this formal model. In this paper, we introduce several examples extending 

ChRF. We illustrate this using several practical situations, mainly in the area of 

recommender systems. Data of the model situations are motivated by Fagin-

Lotem-Naor's data model with attribute preferences and multicriterial aggrega-

tion. In this realm, we review our previous work on the preferential interpretation 

of fuzzy sets, implicit behavior in/and online/offline evaluation of recommender 

systems. We finish with smart extensions of industrial processes. We propose a 

synthesis of these and formulate some open problems. 

Keywords: Galois-Tukey Connect, Blass-Query-Answer, Challenge-Response 

Framework, Recommendation, Aggregation 

1 Introduction 

A real problem use-case represents a challenge. This is usually transformed (re-

duced) to a model. We expect the model to give a response/solution which is (at least 

in a degree) acceptable/meets the challenge. Moreover, this challenge-response under-

standing has two levels – both the real world situation and model situation contains the 

challenge side (input, query, problem...) and the response side (output, answer, solu-

tion...).  

We can see these phenomena in many situations. For instance, when a declarative 

formulation needs a procedural implementation (SQL, NLP...). Or, a human perception 
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expects a relevant response (well, this can be difficult even between humans). Or, when 

a client requests some computation from a server... We consider this "Challenge-Re-

sponse in real-to-model reduction" principle important and would like to develop it 

further.  

These were already formally modeled by our previous work on the ChRF-Challenge-

Response Framework with situations and reductions (see {KV ComSIS}, {VV-

CLMPST}). The requirement was that the acceptable model response of reduced real-

world challenge would be transformed to an acceptable real-world response of the orig-

inal challenge.  

This created a nice theory from several points of view (see Chapter 3). Nevertheless, 

reality sometimes needs an adaptation of our mathematically nice formal model. We 

illustrate this using several practical situations, mainly in the area of recommender sys-

tems.  

The data side of model situations is motivated by Fagin-Lotem-Naor's data model 

with attribute preferences and multicriterial aggregation. I thankfully acknowledge the 

influence of the late Peter Hajek [{H}]. Flexibility is obtained by offering top-k re-

sponses. We review our previous work on the preferential interpretation of fuzzy sets, 

implicit behavior in/and online/offline evaluation of recommender systems. I started to 

study these real-world situations during my involvement in the project [{NAZOU}]. 

We finish the paper with smart extensions of industrial processes. We propose a syn-

thesis of these and formulate some open problems.  

The main contributions of this paper are reformulations of previous results to an 

adapted ChRF setting in  

- data mining and identification of user model from a parametric family of models,  

- interpreting implicit behavior of a user,  

- prediction of online behavior based on offline data,  

- object detection when there are no human-annotated data.  

We formulate several problems both in the formal and applied settings.  

2 Search reduced to a data model with preference aggregation 

Our main motivation is content-based recommendation (typically in real on an e-

shop). Recommendation means to offer a user (customer) an ordered list of objects 

computed in the model situation. Depending on the display, these can be top-10 (or top-

k in general) in some preference ordering of objects for each user separately.  

2.1 eFLN – extended Fagin-Lotem-Naor approach 

User object preference usually depends on preferred values of attributes (properties). 

In what follows, we describe some special cases of preference representation. Some of 

them will be discussed in further chapters in connection with experiments in real-world 

situations. The object model is represented by a relational scheme R(oid, A1, ..., Am), 

where Ai's are attributes with domains Di. Set of objects is a subset of the Cartesian 

product of domains ODi.  
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In [{FLN}] R. Fagin, A. Lotem, and M. Naor describe a system FLN where each 

object has assigned m-many attribute score xo
i  [0, 1]. A Pareto order-preserving (see 

[{GMMP agg}]) aggregation (combination) function t:[0, 1]m  [0, 1] assigns each 

object o an overall score r(o) = t(xo
1, ..., xo

i, ..., xo
m). So the ordering of objects is rep-

resented by natural ordering of overall score in a unit interval of natural numbers as an 

aggregation of attribute score (ordering on attribute values). The main motivation of 

[{FLN}] was to describe a middleware system, where attribute score is available from 

a web service represented by a list of objects ordered descending by score either by an 

ordered approach or (when the ID of an object is known) by a random (direct) access. 

[{FLN}] presents a top-k algorithm and proves beautiful optimality in the price of se-

quential and random access over any possible algorithm, correctly finding top-k with-

out random guessing. 

As our interest is a content-based recommendation, we extend this approach by de-

scribing how these scores can be obtained. Assume, for each user u  U we have an 

attribute preference function fi
u:Di[0, 1] and an aggregation function tu. 

 

Fig. 1. Dynamical aspects of 3 sessions (beginning, middle, and end) of a simplified linear two-

dimensional eFLN model of preferences, see also [{KV ComSIS}]. Note, this can be used both 

inductively and deductively, in both directions from PC to DC and DC to PC. 

The overall preference ru(o) of an object o is given by  

 ru (o) = tu(f1
u(oid.A1),..., fi

u(oid.Ai),... fm
u(oid.Am)) (1) 

Our system is an extension of the [{FLN}] approach as setting fi
u(oid.Ai) = xo

i gives the 

original FLN system.  

Illustration in Figure 1 can serve as a mock-up of an idea where data cube-DC (NE 

quadrant) is the user's screen (reality), graphically calculated from preference cube-PC 

(via SW, NW, and SE) 2/3 contour lines (also motivated by [{R}] and [{Br}]). 
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User's action (orange and blue click) changed the preference model and showed unseen 

objects in the estimated highly preferred area computed by a recommender. Using a 

geographic intuition, we depict 2/3 contour lines of t in preference cube-PC (see SW-

south-west quadrant of Fig.1.); these can be translated to areas in data cube-DC (see 

NE-north-east quadrant) corresponding to objects with preference at least 2/3. For a 

fixed user, dynamical illustration starts with tb(x1, x2) = (x1+ 2x2)/3 begin (purple) ses-

sion, via medium session (tm is average in orange) to end one (blue) with te(x1, x2) = 

(2x1+ x2)/3. Note that NE quadrant with DC represents a real-world situation (on the 

user's screen), and the remaining quadrants SE with f1, NW with f2, and SW with aggre-

gation represent the model situation. In the following chapter, we introduce a general 

framework for reductions of real-world situations to model situations. Further, several 

inductive aspects of eFLN will be dealt with in future chapters on real-world data.  

2.2 Learning by identifying user's preference model 

In the previous paragraph, the overall object preference score was a number obtained 

as an aggregation of an object's attribute preference score in a deductive model. An 

interesting problem is the learning of user preference model. We usually first learn at-

tribute preference functions fi
u, and having these, we can estimate tu. Another point is 

what we know about a user. This will be our task for the rest of the paper.  

Here we mention results from an unpublished preprint [{PEV-TFS}], partly pub-

lished in [{PEV 2015}]. We had real-world production data with individual purchases. 

For learning fi
u's we implemented several regressions and geometric heuristics. For 

learning tu's we used identification of parameters of fuzzy t-conorms (S-norms, see 

[{GMMP agg}]).  The final model was an aggregation of individual content-based 

models and an additional aggregation of behavioral data overall users. See Table 1. 

where the best results evaluated by nDCG and position resp. metric are depicted.  

Table 1. Results of best methods of aggregation identification and regression [{PEV-TFS}] 

Content-based individual Behavioral all users  

Aggregation attribute  aggregation attribute metrics 

Frank linear Sugeno-Weber linear nDCG 

Schweizer-Sklar quadratic Sugeno-Weber linear position 

  

That is, when the overall efficiency of the system is evaluated by nDCG metric, the 

best results were attained by tuning parameters of the Sugeno-Weber family of conorms 

over two inputs: 

1. tuned parameters of Frank conorms over partly linear (triangle) estimation of 

attribute preferences of content-based individual preference models optimized 

according to the prediction of purchases with 

2. aggregating the former with an estimation of attribute preferences of all users. 
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Similar results were obtained when the overall quality was measured by the position of 

the best object in testing data compared to its position in the prediction. It may be in-

teresting to compare these early results with that of later publications ([{PV FUZZ, 

Jo}]). 

3 ChRF – Challenge-Response Framework 

The origin of the Challenge-Response Framework was an old mathematical idea of 

Galois-Tukey connection of [{V-GT}]2 in set and category theory. A. Blass in [{B-

QA}] interpreted this as complexity reductions in theoretical computer science (later 

he calls it challenge-response reductions, see [{B-HST}] and Figure 2(a)). First, we 

define it and discuss it formally. Later we develop it in different real-world situations.  

3.1 A formal model of Challenge-Response Framework 

A Challenge-Response Situation S = (C, R, A) consists of a set of challenge instances 

C, a set of possible responses R and a (possibly graded) binary acceptability relation    

A  C x R. For a challenge instance c  C and a response instance r  R we read          

A(c, r) as "r is an acceptable response to challenge c" (or also another reading "response 

r meets challenge c"). Please note that acceptability relation can be a function (algo-

rithm, process ...). 

Challenge-Response Reduction of a situation S1 = (C1, R1, A1) to a situation                 

S2 = (C2, R2, A2) consists of a pair of functions (-, +) such that -: C1  C2 is a 

reduction of S1 challenges to S2 challenges and +: R2  R1 is a reduction of S2 re-

sponses to S1 responses. A quite natural requirement of equation (2) says that an S2 

acceptable response r to -(c) is reduced to an S1 acceptable response to the original 

challenge, in a logical formula  

 (c C1) (r R2) (A2( -(c), r)  A1(c, +(r)) ) (2) 

In case that A2 =  is an algorithm, the equation (2) changes to the following re-

quirement  

 (c C1)( A1(c, +((-(c))) ) (3) 

                                                           
2  Supported in 1990-91 by Alexander von Humboldt Foundation, Germany 
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Fig. 2. ChRF illustration. Left: a ChRF reduction of 3SAT to 3COLOR. The middle 

(b) shows the process diagram for data mining3. Right (c) shows supervised learning 

reformulated in the language of ChRF language  

Several aspects of this framework will be discussed.  

First is the truth value of the formula in equation (2). In a pure logical understanding, 

it is easy to make it true. Just send all 3CNF instances to a graph that is not 3 vertex 

colorable; hence A2( -(c), r) will be false, and the whole implication will be true (false 

implies * is always true). A. Blass in [{B-QA}] assumes that acceptability relations 

have domains dom(A) = C. In this case, there are no uncolorable graphs. In [{KV 

ComSIS}] and [{VV-CLMPST}]) we discuss the possibility to extend each response 

set with an extra element "nar = no acceptable response" and extend the acceptability 

relations by A(c, nar) for each c  C \ dom(A). It is shown that equation (2) with this 

nar-extended situation fulfills complexity reduction requirements.  

We briefly mention another possible view. Consider S1 situation as above as a (real 

world) challenge instance and S2 as a (model) response instance of a generalized situa-

tion S. Response S2 meets challenge S1 (is a good model for a real-world challenge) 

when there is a ChRF reduction (-, +) fulfilling equation (2). We can say that a gen-

eralized situation S1 = (S11, S12, (-
1, +

1)) is reduced to a generalized situation S2 = 

(S21, S22, (-
2, +

2)) (saying that he model S2 is better than model S1) when there is a 

pair of mappings ( -,+) enabling to transform solutions of S2 to solutions of S1. In 

such a way, we can build a framework of generalized Challenge-Response reductions 

gChRF. This can be interesting both from a formal point of view and in practical appli-

cations.  

3.2 ChRF as reduction of real-world situations to model situations 

We would like to use ChRF idea in practical situations. The main viewpoint is that 

in a situation when one needs help, the recommendation we can reduce this to a model. 

So rephrasing, a Challenge-Response Reduction of a situation S = (Creal, Rreal, Areal) to 

a model situation S = (Cmodel, Rmodel, Amodel) consists of a pair of functions (-, +) such 

that -: Creal  Cmodel and +: Rmodel  Rreal with a requirement that acceptable model 

                                                           
3  https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining 
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responses are acceptable to original challenge (after reductions (-, +)). If Amodel is an 

algorithm, αh respective code can look like:  

FOR each Creal from challenges 

   CALL - with Creal RETURNING Cmodel 

   CALL αh with Cmodel RETURNING Rmodel 

   CALL + with Rmodel RETURNING Rreal 

   CALL Areal with Creal and Rreal RETURNING accepted 

   IF accepted PRINT "Rreal is a response to Creal" 

      ELSE PRINT "there is no response to Creal" 

   END IF 

END FOR  

We have already seen that a pure mathematical understanding of equation (2) has to 

be adapted.  

The second problem is how to understand quantifiers (c C1) (r R2). We will 

see that these can be interpreted as aggregation in the sense of various metrics used in 

experiments.  

Inductive ChRF 

Looking at Figure 2, we can see some similarities between CRISP-DM model and 

ChRF approach. Starting with the real situation first reduction can be to "business un-

derstanding." This can contain a challenge requiring reduction to "data understanding" 

and further to "data preparation." In [{KV ComSIS}] we introduced Inductive ChRF 

in which we look for a method  and a hyperparameter hH to evaluate h on 

training data 𝑥̅𝑦 comparing with  𝑥̅𝑦̂. Here 𝑥̅𝑦 is an abbreviation of 𝑐 = 𝑥,̅ 𝐸(𝑐) =y 

where E is the example set and , 𝑦̂ = +(h(-(c))). The acceptability relation evalu-

ate(𝑥̅, 𝑦̂) can be defined by an instance metric e.g., |y-𝑦̂| and the quantifier (c C1) 

can be understood as an aggregation, e.g. by RMSE. The quality of our estimation is  

 || (c C1)( A1(c, +(h(-(c))))) || = √∑
(𝐸(𝑐)−𝜑+(𝛼ℎ(𝜑−(𝑐))))

2

|𝐶1|
 (4) 

The most usual case of finding an acceptable solution in a model situation is to find 

it by induction (data mining, learning ...). We are not going into details of ChRF mod-

eling of learning, tuning, cross-validation etc.  

Real-world acceptability depends on user u. In the case of recommender systems, 

this can be either user's explicit rating or our interpretation of u's behavior (see Chapter 

4). User's behavior can be, e.g., purchase, click, time reading the detail of an item, etc.  

Note that this gives a dynamic model of ChR, because user's satisfaction has to be 

followed (e.g., by scripts), evaluated, and taken into account in the next recommenda-

tion (more on this in chapter 5).  
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4 Implicit preference relations in recommendation 

In this chapter, we use results from [{PV JoDS}] to make a step in extending ChRF.  

In previous chapters, the overall object preference was a number obtained as an aggre-

gation of the object's attribute preference score. The size of a number itself does not 

matter. We use numbers as an ordinal scale and numbers code an ordering. For appli-

cation in recommender systems, we sometimes need to aggregate several recommend-

ers (algorithms). Sometimes these do not offer a rating (score). They give just a position 

(rank).  Here we describe a real-world experiment where a recommender's linear order-

ing form was enhanced by a partial ordering coming from preference interpretation of 

the user's implicit behavior.  

The approach of [{PV JoDS}] is illustrated in Figure 3 left. Fix a user u. Assume we 

have an ordered list of object 𝐿𝑢
̅̅ ̅, from a recommender. The idea is to use the infor-

mation on the visibility of objects and the user's action (clicked, scrolled). In time T1 

objects O1, O2, O3, and O4 were visible. He/she clicked on object O3 and did not act 

on the remaining object. This can be interpreted in a way that object O3 is more pre-

ferred than the other 3 objects. Nevertheless, after a scrolling (and much shorter visi-

bility), objects O3 to O6 were visible, and there was no further action. Now object O4 

was visible much longer than, e.g., O1. So some preference degree of O3 over O4 

should be greater than that over O1. In [{PV JoDS}], we designed some measures to 

express this intensity and output relation IPR4. As user behavior data are quite sparse, 

we extended this relation by the similarity of the object and computed relation 𝑅𝑢̂ (it is 

a partial order, nevertheless has information on objects the user was searching). In [{PV 

JoDS}] we have designed several ways how to merge these two orders, the linear or-

dering  𝐿𝑢
̅̅ ̅ and the partial ordering  𝑅𝑢̂, to get final ordering Lu. Then in experiments, 

we have evaluated how far is Lu better than   𝐿𝑢
̅̅ ̅, and which method gives the best 

results. Roughly speaking, when, e.g., a contradiction between the ordering of O3 and 

O1 in Lu and  𝑅𝑢̂, is discovered we can put O3 just before O1 in the next iteration of Lu 

(or O1 just behind O3, or swap both ...). Please consult the paper for more details.  

Here we are interested in an extension of the ChRF where the model (algorithm 3) 

giving Lu is a combination of algorithms 1 and 2, originally computing 𝑅𝑢̂  and 𝐿𝑢
̅̅ ̅.  

To our surprise, original meet and join in the algebraic category of {V-GT} and {B-

QA} (or corresponding lattice) do not apply. In Figure 3 right, we propose a construc-

tion that takes responses of two models and presents them as a challenge of a model 

situation that could be considered an aggregation of previous situations. It is an inter-

esting problem if this construction has a category-theoretic interpretation. 

                                                           
4  IPR source codes: https://github.com/lpeska/Implicit-Preference-Relations , for more resources see 

the paper 



9 

 

Fig. 3. Left, enhancing recommender results by implicit user's behavior (see [{PV JoDS}]). 

Right, a description using extended ChRF for this sort of aggregation.  

5 Predictability of online recommendation  

This is the last chapter devoted to recommender systems. We would like to illustrate 

here another possibility of interpreting universal quantification. The content is based 

on paper {PV FUZZ}5. The long-standing problem is the connection between offline 

recommendations (one based on historical production data) and online recommenda-

tions. Of course, we can be careful and use only A/B testing for changing our recom-

mender. Still, each A/B test takes time, effort and can be discouraging for customers. 

So the idea is to provide A/B testing only with the promising candidate(s). Before 

choosing this candidate, we have to solve the problem of algorithms and metrics by 

which we will evaluate which candidate solution is most promising. And this was the 

main goal for {PV FUZZ}.  

We had true production data and also the access to provide online A/B testing. There-

fore, offline data played the role of a model, and online production was the real world 

to be modeled. The implication Amodel(...)  Areal(...) became Aoff-line(...)  Aon-line(...), 

and this can be interpreted as our main task – how to evaluate online results based on 

offline achievements.  

The first problem occurs with users. It is difficult to identify users from offline data 

and online testing (these can be quite disjoint sets). So, we have to quantify all users. 

Quantification over all objects is already a part of ChRF reduction formalization. For 

the beginning, we chose several item-to-item recommendation algorithms sufficiently 

rich to represent a content-based attribute, textual description of objects, and collabo-

rative aspects of our data. So finally, we had to quantify over all algorithms.  

                                                           
5  See https://github.com/lpeska/FUZZ-IEEE2020 for source codes, evaluation data and complete results 

are available from    

https://github.com/lpeska/FUZZ-IEEE2020
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Fig. 4. Left, illustration of ChRF representation of using offline data for online prediction. 

Right there is miniaturized Figure 1 with 3 sessions, and the green background represents the 

real situation, whereas the red one the model.  

In Figure 4, using the notation of beginning, middle, and end session, we can see 

that the previous session's responses (visualized top-k recommendation) are chal-

lenges of the next session. User's acceptability is his/her perception of sessions, - de-

notes our scripts recording user's behavior. The model computes the next recommen-

dation based on previous behavior and outputs top-k, which is visualized by + to 

next session. 

This is another understanding of ChRF in a real-world situation. In {PV FUZZ} we 

provided A/B testing with the 12 most promising algorithms. Motivated by {HH} we 

interpret quantifiers in implication describing ChR reduction from offline to online by 

aggregation. It makes good sense because we would like to have an overall evaluation 

of" how good are algorithms (trained offline with respect to some metric) in predict-

ing user's online behavior." Most of the aggregations were just averages. It is a chal-

lenge for future research and experiments to consider some other aggregations. In 

{PV FUZZ} we aggregated over all algorithms, and results were metrics that are the 

best predictors for an online recommendation. One can imagine aggregating over met-

rics to get the best algorithms, and joining both could be interesting to test.  

6 Object detection from visual data 

So far, we have had more or less reliable data about real-world situations either from 

training and/or behavioral data. Data reliability is obtained by human expert interven-

tion designing data collection. In the final chapter, we consider a situation where we do 

not have any human-annotated training data. We build on the object detection model 

developed in {BHV-ISM}. The main goal of {BHV-ISM} was to automatically create 

a system for object detection in industrial premises without any human intervention. 

This has to lead us to a concept of "pseudo ground truth." Pseudo ground truth PGT3 is 

created by a heuristic process considering a correct object detection be the one where 

at least three models agreed (lower index 3 in PGT3 refers to a number of models re-

quired to agree on an instance).  

From the point of view of ChRF, this situation is interesting. The real ChR situation 

is on the camera screen.  For the model situation, we do not have any train and test data 

(correct in the sense that the object detection bounding box and the class were annotated 

by a human). So, we have a pseudo-model situation, and the main point is that the 
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modeling algorithm is chosen without any human intervention, just considering the per-

formance using pseudo-ground truth. So it can be deployed in a situation where there 

is no staff for annotation. We discuss the quality of our model to give an acceptable 

response. For this purpose, we annotated some video frames.  

Figure Fig. 5 shows an example of a CCTV camera from an office environment. The 

picture shows the detections of 11 objects belonging to 3 classes - person, bottle, and 

mouse. False-positive predictions are marked in red.  

 

Fig. 5. Office scene with true and false positive object detection. Ids of persons will be used in 

the text below (source YouTube).  

Figure 6 shows the performance of nine models we used for the creation of the 

pseudo-ground truth.  

Models are in columns, and predictions are rows (ids of detected persons correspond 

to those in Figure 5). The last three rows are false positives.  

The first 9 columns (with names of deep neural network models) depict the size of 

the confidence score of respective predictions in the blue bar. We can see that some 

models did not detect an object at all, some detected with small confidence, and some 

made a wrong prediction. GT column is a yes-no column (depicted in black) that shows 

objects made to pseudo-ground truth on this image. PGT3 column depicts confidence 

the pseudo ground truth was obtained. Based on PGT3, we chose the best model. The 

best model (YOLO3) for a specific CCTV camera (this model also shows a false neg-

ative error rate). In addition to the best model, the method also determines the order of 

the models according to the expected performance. Column W * TOP3 shows the con-

fidence we gained by weighing the 3 best models obtained by our method. The weights 

for these 3 models were determined using linear regression. However, the CenterNet-

HG104 model was also included in the TOP3 models, which demonstrates a false pos-

itive prediction in the case of the object I. This false-positive prediction was also trans-

ferred to the W * ALL prediction. To complete, we also present the W * ALL column, 

which shows the confidence gained by weighing all 9 models. Again, these weights are 
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determined by linear regression. The hope was that the wrong influence of some models 

might have been eliminated. This elimination really came about because it is visible 

that false-positive predictions (J and K) from the Retinanet-RN50 model are not in-

cluded in W * ALL. 

 

Fig 6. Different confidence of models on respective (true/false) detections. 

 

This experiment shows a new ChRF reduction from a real situation to model one. 

Various metrics can evaluate the overall quality of responses. Some show that false 

positives can be eliminated. Still, there is a problem with false negatives – we leave it 

for future work. 

7 Conclusions and future work 

We considered real-world recommender systems based on the Fagin-Lotem-Naor data 

model with aggregation. Our primary interest was to test Challenge-Response Frame-

work in several real-world situations. Results show that proper reduction to a model 

situation requires using different metrics and different aggregations in place of logical 

quantifiers and calculation of truth values. Finally, we mention several problems both 

in the formal model and practical use of ChRF. 

Results show that ChRF is quite flexible when measured by appropriate metrics. The 

role of aggregation in quantification goes behind the classical understanding of aggre-

gation in multicriterial modeling.  
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