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Abstract. We study possibilities and ways to increase automation, efficiency, and 
digitization of industrial processes by integrating knowledge gained from UAV 
(unmanned aerial vehicle) images with systems to support managerial decision-
making. Here we present our results in the secondary wood processing industry. 
First, we present a deployed solution for repeated area and volume estimated 
calculations of wood stock areas from our UAV images in the customer's warehouse. 
Processing with the commercial software we use is time-consuming and requires 
annotation by humans (each time aerial images are processed). Second, we present 
a partial solution where for computing areas of woodpiles, the only human activity 
is annotating training images for deep neural networks' supervised learning (only 
once in a while). Third, we discuss a multicriterial evaluation of possible 
improvements concerning the precision, frequency, and processing time. The 
method uses UAVs to take images of woodpiles, deep neural networks for semantic 
segmentation, and an algorithm to improve results. (semantic segmentation as image 
classification at a pixel level). Our experiments compare several architectures, 
backbones, and hyperparameters on real-world data. To calculate also volumes, the 
feasibility of our approach and to verify it will function as envisioned is verified by 
a proof of concept. The exchange of knowledge with industrial processes is 
mediated by ontological comparison and translation of OWL into UML. 
Furthermore, it shows the possibility of establishing communication between 
knowledge extractors from images taken by UAVs and managerial decision 
systems. 

Keywords. automation of industrial processes; decision support; knowledge and 
information modeling and discovery; deep neural learning; modeling multimedia 
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1. Introduction 

Our long term research project is focused on studying possibilities and ways to increase 
automation, efficiency, and digitization of production, technological and logistic 
processes in the automotive industry using autonomously controlled UAV (unmanned 
aerial vehicles) means combined with ICT equipment for real-time processing and 
evaluation of acquired data according to Industry 4.0. 
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There are numerous UAVs applications in managing civil infrastructure assets, such 
as routine bridge inspections, disaster management, power line surveillance, and traffic 
monitoring. This article describes our experience with an internally developed and 
deployed solution that uses a commercial photogrammetric product in the wood 
processing industry. Furthermore, we design new methods and prototypes in the 
mentioned above Industry 4.0 direction. That is, we increase automation of all processes, 
decrease the need for human expert intervention and interconnect our application with a 
decision support system via an ontology. 

Industry 4.0 is the digital transformation of manufacturing and related industries and 
value creation processes in organizations, including logistics, supply chain, finance, 
accounting, and human resources. It helps manufacturers with current challenges by 
becoming more flexible and reacts easier to changes in the market. It can increase the 
speed of innovation and is very consumer-centered, leading to faster design processes. 
Implementation of this trend in an organization focuses on creating detailed digital 
models of reality, optimally real-time. This digital model (digital twin, see [23] for a 
framework reducing reality to a model) makes it much easier to oversee, control, and 
actively manage all production and manufacturing processes. A critical prerequisite is 
the acquisition of detailed data that can be processed and transformed into the knowledge 
needed for qualified management decisions by enriching the classic high-level data of 
the ERP system (e.g., orders and deliveries, accounting, plant management) with little-
detailed operation data. It is commonly achieved using barcodes, QR codes, and scanners 
or using different IoT sensors. 

Nevertheless, some data cannot be obtained, collected, or measured automatically. 
Appropriately equipped workers are necessary for manual collection, processing, and 
visual or sound data transformation. Humans' processing of visual or sound data means 
high costs and very long data update intervals. For example, inventory of externally 
stored material, such as containers, coal, wood stockpiles, or freshly made cars, can take 
several hours and days and often requires more personnel with adequate equipment — 
measuring equipment, dedicated software, or a protective kit. After an inventory check, 
the data is entered manually into the basic ERP systems, far from real-time processing. 
Based on this data, no real-time correction is possible. Only subsequent actions can be 
performed. 

The research project aims to automatically collect outdoor visual data using pre-
programmed UAVs and automatically process and transform them into knowledge using 
advanced computational tools such as machine learning based on deep neural networks. 
Deploying this solution to a real production facility can bring the capability of automatic 
data collection and processing of visual data regularly, with direct integration to core 
ERP systems in the form of alerts or data transfer. This way, the outdoor reality could be 
manageable almost in real-time. Our ambition is to deploy such a solution in the 
automotive production plant or its suppliers for logistics, warehousing, security, or 
maintenance. We start our research with automatic measurements of wood stockpiles in 
the wood storage facility. Slovakia is the fourth largest forest-covered country in the EU 
(with about 41% of the area, after Sweden, Finland, and Austria). The wood processing 
industry characterizes lower profit margins than in other sectors. Therefore, it is 
necessary to create value-added products in Slovakia and not just export raw wood 
abroad. For this reason, we consider it essential to bring new procedures and solutions 
using UAVs and intelligent image processing. 

Our company has a research and development department, where we prepare 
prototypes in knowledge modeling and processing high-quality images from different 
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sources, such as UAV aerial images. Our starting point for this paper is a deployed 
solution to calculate wood stockpiles volume in the customer's warehouse using UAV 
images. The photogrammetry software we use to process UAV images requires 
annotating the area of interest from an expert. It can be challenging when multiple 
customers need to be served. Developing a generic solution that makes this annotation 
automated can be exciting in many practical applications. 

2. Use case description 

The customer is active in secondary wood processing, also known as value-added wood 
products manufacturing, generally defined as continuous manufacturing beyond lumber 
production. This customer needs information about the temporal development in wood 
stockpiles. 

The on-site process begins by setting calibration points, placing them manually, and 
marking a known length. It is necessary for precise photogrammetry processing. The 
next step is to set the flight route data manually so the drone (UAV) is ready to fly and 
take appropriate area pictures. Afterward, pictures are taken and collected to fit automatic 
processing by a commercial tool, Pix4D, which creates an orthophoto map [17]. The 
created orthophoto map trained user manually annotates the areas of interest, which took 
the trained user about 20 minutes (depending on the area shape).  Finally, Pix4D can 
calculate the woodpiles' area and volume.  

Our goal is to eliminate manual processing steps to have a generic solution (with an 
API) that automated this process. Thus, our solution could be deployed for more 
customers without the need for a trained human expert annotator. We hope this can be 
very interesting in many practical applications also beyond the wood industry.  

The solution we present here works using neural network-trained solutions for 
semantic segmentation and domain ontology in multimedia/spatial environments. Our 
main contributions are: 

� Experiences and data from a deployed system using UAVs and the 
professional/commercial photogrammetry software.  

� A new system integration solution interconnecting UAV aerial images from a 
wood log warehouse with the decision support system mediated by an ontology 
and customers' requirements. Depending on the application need, we can tune 
our solution up along several axes (e.g., precision, execution time, amount of 
human expert activity, frequency).   

� An experimental prototype of the UAV aerial image processing system, based 
on several alternative deep neural network architectures and several pre-trained 
backbones. We improve semantic segmentation with a new algorithm. 

� Experiments with calculations of the area of the wood logs pile base with real-
world data from several UAV flights during 9 months and their comparison with 
the results from Pix4D.   

� The extracted knowledge can be sent to the decision support system using a 
general external ontology equipped with the respective domain extension. 

Other extensions of this use case can classify the type or quality of wood or work in 
places where manual calibration point settings are impossible. For example, the idea is 
to use a car catalog with known car dimensions. An alternative task may be to decide 
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only whether the warehouse wood reserve has increased or decreased. Another option 
would be to estimate the amount of wood delivered for a given time compared to the 
declared invoice for delivery (combined with vehicle weighting and license plate reader). 

3. First deployed application and experiences 

The UAV systems can quickly and efficiently collect data and capture vast areas of the 
globe from the surface in various spectra. The most commonly used spectrum for 
imaging is the orthophoto layer (geometrically corrected ("orthorectified") such that the 
scale is uniform). The data captured from the UAV also contains field data, which in 
conjunction with the orthophoto layer, we can process photogrammetrically post-process 
and thus provide data with higher added value. In addition, photogrammetry provides 
optical and mathematical methods and tools for calculating spatial/dimensional 
coordinates based on digital photography from the scanned area. 

The main issue is how to use these data to get optimal information for specific tasks. 
First, let us focus on calculating estimates of wood stockpiles volumes. 

� Several parameters affect the measurement results: 
� Ability to obtain the most accurate information for 3D processing 
� Processing time (higher accuracy takes longer) 
� Degree of automation (how much manual work of an expert is required) 

At first sight, it is clear that these parameters conflict with current technology standards 
in the field. However, we already successfully deployed our first solution in the customer 
warehouse, where a large amount of wood was processed. The primary task is to estimate 
the volume of regular wood stockpiles and their changes in time.  As we mentioned 
above, the necessary process of collecting aerial pictures using drones is in place, so we 
already have calibrated system using drones, which collects the aerial area images. 

In further processing, Pix4Dmapper[17]  transforms the geodetic coordinates of the 
images' common points into a single 3D model of the scanned area into a point cloud. 
Such an approach can achieve high accuracy, but it is time-consuming for processing. 
The whole process displays a red arrow procedure in Figure 1. The rising demands on 
precision require more processing time in the range of hours to days. 

To address processing time the automation is necessary. The automated data 
processing process follows the green arrow procedure in Figure 1. That shows how our 
new solution works. However, the only difference is which steps are manual and which 
are automated. 
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Figure 1. Procedure for processing the already deployed solution (red arrows) using GCP (ground control 
points) and our new approach (green arrows) with an alternative without GCP and functional area calculation 
and proof of concept of volume calculation 

 
The already mentioned product process (red arrows procedure in Figure 1) takes place 
almost automatically, except for the three manual steps: 
1. The first manual step (D2 in Figure1) is manual program (Pix4D) processing 

settings. The program has several attributes that are necessary to select before the 
process according to the parameters of the monitored environment and the subject 
of measurements, such as environment type, measured object shape, surrounding 
environment, the quality of the collected data (e.g., the influence of current weather 
on local brightness), required quality and precision of the results and other 
specifications. 

2. The second manual step (D4 in Figure 1) is calibration using ground control points 
(GCPs) marked and measured at the beginning of the scan. The calibration itself 
consists of entering these parameters into the program based on their identification 
from the evaluated area's images. Again, we use state-of-the-art satellite technology 
with a deviation at the centimeter level to target GCP reference points. This step is 
performed on-site just before the drone takes off and is a manual annotation in the 
program itself (Figure 2). 

 

Figure 2. Ground Control Points (GCPs) annotation in Pix4D 
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3. The third manual step (D5 in Figure 1) is 
to annotate the edges precisely to 
demarcate and define the wood base's 
shape (in all directions). This step is 
critical for accurate area and volume 
calculation. It consists of manually 
marking edges of a convex area directly 
in the orthophoto map, between which 
we want to measure the exact value of 
dimensions in space (see Figure 3). By 
the way, it is the most time-consuming 
step, and the prerequisite is trained 
professionals. 

After these three manual steps, the program (Pix4D) can calculate the area of annotated 
surface and volume of the corresponding wood stockpiles. 

4. Model training and data annotation 

The Pix4D photogrammetric method has proved to be valid and gives satisfactory results 
for our customers. However, in this method's background, we still find many activities 
requiring the manual work of highly trained users. Moreover, it would be necessary for 
ontology engineering and connection to a decision support system to have complete 
control over the application (e.g., using API). 

Suppose we created a system that can proceed automatically without intervention. 
In that case, we could streamline the entire process of regular daily inventory 
measurements and at the same time effectively evaluate and monitor the movements 
(increase and decrease in the area) of material in the warehouse. We would potentially 
gain an overview of materials' movement over large areas of one or more warehouses of 
different customers. It would find justification in several industries by extending today's 
limited capabilities to almost unlimited use with automated UAVs for regular 
inventories. The idea to create an automated system for identifying the content (storage 
space occupancy) of stored wood in the warehouses of a wood processing company has 
been our quest. 

For localizing the woodpiles in the images, we used deep neural networks (DNN). 
DNNs are used to solve several types of tasks such as image classification, object 
detection, etc. In our case, we use DNNs to solve an image segmentation type task with 
two classes (woodpile, background on pixel level). Since training models from scratch 
is very computationally and data-intensive, we used a transfer learning method to train 
our models. In this method, an existing model - which has been trained on a different 
dataset (e.g., an image segmentation model with a backbone trained to discriminate 80 
object types) is used, and this model is then trained on a new task and data sample - 
identifying woodpiles. The advantage of this approach lies in the fact that the original 
model with a backbone was already able to identify basic shapes and their combinations. 
Thus, subsequent training just adapted this model to the new task and data. 

The image segmentation task is of supervised machine learning type and hence 
needs annotated data (ground truth) for training. The annotated image represents the 
image itself and its metadata, defined as the relevant objects' location in the image. We 

Figure 3. Manual annotation of the area of interest 
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used the Label Studio tool3 to annotate the images. We used it to mark the wood 
stockpiles on a sample of pictures. For annotation, we used original images from 3 flights 
in 4K resolution. These images have been scaled down and split into smaller 480x480px 
images. We manually annotated 1000 images. Subsequently, we split the data images 
into a training dataset (800 images) and a validation dataset (200 images). 

We used augmentation within the training cycle to prevent overfitting in neural 
networks to increase the size and diversity of annotated data. The imgaug library4 
provides a wide range of transformations in order to transform both image and 
segmentation data. In our case, we used affine transformations (rotation, shift, zoom), 
contrast adjustment, noise generation, and the like. 

As a baseline implementation of image segmentation models, we used the 
Segmentation Models library5. This library implements 4 model architectures for binary 
and multi-class classification (U-Net, PSPNet, Linknet, and FPN). In addition, the library 
uses the transfer learning method and allows using one of the 25 pre-trained networks 
(trained to classify the 2012 ILSVRC ImageNet dataset6) as a backbone for the semantic 
segmentation architecture. This method makes it possible to use a trained neural network, 
or part of it, for another (related) category of tasks. In our experiment, we used 3 
architectures (U-Net, PSPNet, and FPN) and 2 backbones (ResNet-18 and VGG-16). 
These models were trained using our annotated training and validation dataset. 

Several factors affect the performance and accuracy of the trained model and the 
speed of training and interference during deployment in the production environment. 
These include: 

� The chosen architecture - determines the model's performance, stability, the 
time required for its training and interference, and other aspects of neural 
network models. The development of neural network architectures for semantic 
segmentation is an area of intensive scientific research and development. An 
overview of current architectures can be found on the link7. 

� The selected type of pre-trained neural network backbone - is essential when 
the transfer learning method is applied. As with architecture selection, the 
backbone neural network selection affects model performance, stability, 
training time, and interference. 

  

                                                           
3 https://github.com/heartexlabs/label-studio 
4 https://github.com/aleju/imgaug 
5 https://github.com/qubvel/segmentation_models 
6 http://image-net.org/challenges/LSVRC/2012/ 
7 https://paperswithcode.com/methods/category/segmentation-models 
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5. Methods, tools, and experiments  

Figure 4 shows the progression of our experiment, which consists of multiple phases: 
First phase <1. ODM> shows the generation of an orthophoto map from the input images 
using the OpenDroneMap8 tool. 

 

These images are in 4K quality, and their 
number is in the order of hundreds. This step 
is necessary because it is not always possible 
to have the whole woodpile on a single image 
(Figure 5).  

The generated orthophoto map shows the 
entire monitored area in a single image. 
However, the orthophoto map is too large for 
further direct processing (~ 18000x12000 px) 
and therefore needs to be processed. Thus, the 
next phase <2. Split> splits the input 
orthophoto map into N images with a 
resolution of 480x480 px. 

  

                                                           
8 https://www.opendronemap.org/ 

Figure 4. The progression of our experiment. See details below in the following text. 

Figure 5. The input image shows three different 
parts of different woodpiles, none of which is 
visible as a whole. 
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The next phase <3. Predict> is the actual prediction/localization of the woodpiles. We 
used in parallel several trained deep neural network models (modeli) for the image 
segmentation task (described in section 4. Model training and data annotation). The input 
for such a model is a 3-channel (RGB) image with a resolution of 480x480px. The output 
is a 1-channel (gray-scale) image with the same resolution, where each pixel determines 
the probability with which a woodpile is or is not present at a given location. Thus, the 
output of the whole phase is N gray-scale images with a resolution of 480x480px. Since 
we chose several image segmentation models within the experiment, section 5.2 
Experiments presents the results of each model. 

For further processing, for each modeli, these N predictions need to be combined. 
These images are merged in the next phase <4. Join>. For the join, an analogous 
procedure as in the phase <2. Split> is used.  

After the predictions join, an image analogous to the orthophoto map containing the 
predicted positions of the woodpiles is produced. Since the result from the prediction is 
only a probabilistic map, these results still need to be processed. The final processing 
takes place in phase <5. Finalize>. For a more detailed description of this processing, 
see the next section, 5.1 Finalize. 

5.1. Finalize 

The output from the model (each modeli) is a segmentation mask. The segmentation 
mask represents the probability that each pixel of the input image is part of the wood 
stockpile.  The post-processing task is to convert such a segmentation mask of 
probabilities into a set of contours. Subsequently, it is possible to transform these regions 
into a set of polygons. This procedure is shown in Figure 6. 
 

 

  

Figure 6. Segmentation mask with probabilities (black and white image with shades of gray), detected area 
by our algorithm (blue-black image), and projected detected area approximated by polygons (in red) 

 
The left image shows the probability segmentation mask contains empty spaces (places 
without woodpiles), protrusions, and areas with different probabilities (places where the 
algorithm located woodpiles). The middle image represents the mask processed by our 
algorithm. It clearly defines where the stored timber is and where it is not. 

The conversion of a segmentation mask with probabilities to a set of polygons 
directly impacts the prediction quality. Several hyperparameters can influence the 
conversion algorithm, which can significantly impact the final accuracy of the model 
prediction. We searched for the values of these parameters manually when solving 
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subtasks. The algorithm uses the OpenCV9 library. Initially, the segmentation mask is 
converted to binary using the threshold parameter. Subsequently, the algorithm performs 
the close morphological operation on the binary mask using a kernel with the shape 
kernel_shape and size (kernel_size, kernel_size). The morphological operation serves to 
close the "holes" which are visible in Figure 6, left, for example. First, contours 
(contiguous areas of similar color and intensity) are searched for on such a modified 
binary mask. Next, the algorithm iterates the contours. If the contour area is smaller than 
the min_area, the algorithm excludes such a contour from further processing. Otherwise, 
the algorithm tries to approximate the contour using a polygon (epsilon parameter).Code 
converting a segmentation mask to a set of polygons: 

 
INPUT: mask, threshold, epsilon, kernel_size 
SET result TO [] 
SET mask_bin TO mask > threshold 
CALL cv2.getStructuringElement WITH kernel_size, cv2.MORPH_ELLIPSE RETURNING 
kernel 
CALL cv2.morphologyEx WITH mask_bin, kernel, cv2.MORPH_CLOSE RETURNING mask_mod 
CALL cv2.findContours WITH mask_mod RETURNING contours 
FOR EACH contour IN countors 
    CALL cv2.contourArea WITH contour RETURNING area 
    IF area < min_area THEN 
        CONTINUE 
    END IF 
    CALL cv2.arcLength WITH contour RETURNING arcl 
    SET econtour TO arcl * epsilon 
    CALL cv2.approxPolyDP WITH contour, econtour RETURNING cpoly 
    APPEND cpoly TO result 
END FOR 
OUTPUT: result 

 

Figure 7. Areas with stored wood that were the survey subject, marked in red, with the group identifier as a 
recognized area 

5.2. Experiments 

Figure 7 shows the area where we performed our experiments. The woodpiles are 
annotated (marked in red) by our algorithm. There are 12 woodpiles labeled G0 to G11 
in the figure.  To evaluate the performance of the models, we also need to know the actual 
area of the woodpiles - the ground truth (GT). We obtained these using the Pix4D tools. 
The ground truth of the stack area ranges from 98 m2 (G9) to 1794 m2 (G11).  

                                                           
9 https://opencv.org/ 
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The following table (Table 1) shows the results of the model predictions and GT 
areas of G0 - G11. 
 

Table 1. Comparison of the results of our predictions of models for surfaces G0 to G11 
with the ground truth (GT). 

 Model prediction m2 GT m2 

 

FPN 
ResNet18 

FPN 
VGG16 

PSPNet 
ResNet18 

PSPNet 
VGG16 

UNet 
ResNet18 

UNet 
VGG16 Pix4D 

G0 1084 1080 1096 1078 1087 1083 1104 

G1 334 314 344 317 344 311 325 

G2 536 534 540 528 518 523 597 

G3 218 214 207 214 214 211 234 

G4 431 350 440 512 467 383 368 

G5 915 867 898 890 929 909 948 

G6 1147 1149 1156 1177 1150 1155 1138 

G7 886 890 903 894 886 891 887 

G8 293 281 283 292 290 282 298 

G9 87 86 97 83 88 86 98 

G10 281 278 272 263 281 276 305 

G11 1685 1765 1708 1720 1755 1752 1794 

Let M be the set of models, G be the set of areas {G0, …, G11}. Amg is the model 
prediction for m  M and area g  G, and GTg is the ground truth area for g  G. We 
evaluated the performance of the models using the MAE, CAE, and MAPE. 

We can define the MAE (mean absolute error) metric as: 

 (1) 

The CAE (cumulative absolute error) metric is defined as: 

 (2) 

  

S. Brezani et al. / Deep Learning for Knowledge Extraction from UAV Images54



The MAPE (mean absolute percentage error) metric is defined as 

 (3) 

 

Table 2. Comparison of individual models predictions using MAP (mean absolute error), CAE (cumulative 
absolute error), and MAPE (mean absolute percentage error) metrics 

 MAE / m2 CAE / m2 MAPE / % 

UNet VGG16 25.39 304.72 5.63 

FPN VGG16 26.41 316.93 5.64 

UNet ResNet18 28.98 347.74 6.88 

FPN ResNet18 30.24 362.87 5.87 

PSPNet ResNet18 33.55 402.63 6.48 

PSPNet VGG16 42.48 509.71 9.19 

The table shows that the model with U-Net architecture and VGG16 backbone is the best 
in all metrics. The MAE metric expresses the average absolute error of the area 
prediction. In the case of the best model, this value is ±25.39 m2. Because the areas of 
the measured stacks are diametrically different in size 98 m2 vs. 1794 m2 (G9 / G11), the 
MAPE metric, which abstracts the area size, is also of interest. This metric expresses the 
average absolute percentage deviation from GT. Again, the best model has this value ± 
5.63%. 

The last CAE metric expresses the total absolute deviation of all G areas from GT. 
The CAE of the best model is 304.72 m2. If we compare this value with the total area of 
woodpiles in the area  we get a deviation of 3.76 % 
(304.72 ÷ 80.96141). The error rate from the point of view of individual areas g, g  G 
shows the graph in Figure 8.  

 
Figure 8. The graph shows the error rate of model predictions for each woodpile. 

The graph shows G2, G4, G5, G10, and G11 areas, for which all models show a high 
error rate. Therefore, these areas can be described as "difficult". Similarly, the G4 area 
in which most models showed a high error rate. We assume that these areas contain 
patterns/structures of wood that the trained models cannot recognize. Figure 9 shows 
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images of the areas G4 and G11 with the marked problem parts. An ongoing analysis of 
these areas can therefore help increase the accuracy of the solution. 

 
 

  
Figure 9. The red squares are the problematic parts in areas G4 and G11, where the models systematically 

fail. 

6. Possible future development – proof of concept 

Next, we describe our experience with further developments. These were neither fully 
implemented in our experimental tool nor fully evaluated so that we can describe their 
status only as proof of concept.  

6.1. The backbone retrain 

Our following motivation is to increase the accuracy of a neural network by the backbone 
improvement and its convergence to error loss elimination and a progression towards a 
network state where the network has learned to appropriately respond to a set of training 
patterns within some margin of error. 

The backbone in the neural network serves as a features extractor. It is often trained 
on different tasks such as image classification and different data than we use. An 
interesting approach may be to retrain the backbone on a task similar to the required 
objective. For example, we need more annotated training data to retrain the backbone to 
image classification. However, data annotation is time-consuming and economically 
demanding; therefore, it is not worth using this exercise. 

A self-supervised learning task, known as Contrastive Learning, does not require 
annotated data, maybe a suitable approach. An example is a SimCLR method[2]. Using 
this method, we can train the backbone on a large set of real data (in the order of 10,000 
images) and thus adapt it to our needs and then use it in our semantic segmentation 
models. 
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6.2. Increasing the diversity of the training dataset 

We aim to incrementally improve the following research training dataset by manually 
annotating the images where the model showed the highest error rate (see Figure 10). 
 

  
Figure 10. Example of images with incorrect prediction - candidates for training set extension 

 

6.3. Data input enrichment 

In our research, we mainly focused on identifying wood stockpiles from UAV aerial 
images. Implemented models currently use these images as a prediction input, with each 
image being 3-channel (RGB). 

Since the wood stockpiles are spatial objects, extending the models' inputs by the 
4th channel is an elevation map (see Figure 11). 

 

 
Figure 11. Example of wood stockpiles with the corresponding elevation map 

 
An elevation map can be obtained directly from a LIDAR device as an elevation map or 
as a side output of the orthophoto map generation. Furthermore, the elevation map (see 
Figure 12) could extend the input of the prediction model by another channel - the 
elevation map. Thus, the input can be a 4-channel image (RGB + elevation map) for a 
composite model that improves semantic segmentation prediction. In the future, using an 
elevation map could be an important step in volume estimation. Our proof of concept 
shows it is feasible as envisioned. 
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Figure 12. Schematic use of elevation map for improving semantic segmentation 

 
Even under the assumption that the use of elevation maps can be a significant 
contribution, there are situations where its contribution can be debatable or misleading, 
for example, when the timbers merge with the surroundings, as in Figure 13 below. 
 

 
Figure 13. Example of an elevation map where the wood mass overlaps with the environment (beams vs. 

sawdust or wood chips) 

6.4. Other ideas 

In paper [14], the authors describe the usage of car catalogs for object recognition.  UAV 
aerial image is compared to one in the catalog with a similarity measure. In this way, it 
would be possible to estimate real dimensions in the future without the need for ground 
calibration (known vehicles have known dimensions). Some other objects can have 
known dimensions, e.g., track gauges. However, similar considerations are, so far, only 
a future work.   

7. Decision support system enriched by knowledge extracted from UAV aerial 
images 

We briefly describe how knowledge extracted from UAV aerial images can be sent to a 
decision support system. Start with a flat general ontology (e.g., DBPedia10, Schema11), 

                                                           
10 http://dbpedia.org/ontology/ 
11 https://schema.org/ 
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then we extend it with a Spatio-temporal model [16], and finally with a domain ontology 
(e.g., here [15] ). The connection between OWL and UML can be made by [1] (or by 
owl2uml, which is a Protege plugin12) 

 
Figure 14. Knowledge exchange 

Communication between our knowledge extractor and managerial decision system (inner 
company processes) goes both ways, as indicated in Figure 14. The right-to-left direction 
is first dedicated to automated communication of user requirements. There are several 

conflicting possible user preferences. 
We mention three axes here: the time 
required for one flight processing, 
required accuracy, and required 
repetition frequency. 

Figure 15 illustrates 
interrelations between several 
alternatives: in red, our deployed 
solution with high precision, the 
considerable time needed for 
processing, and required repetition in 
months (solid bullet is the 3D position 
and bullets with no shape fill are 
respective projections to 2D planes). 
Orange and green are alternatives we 

consider in our experiments. Violet is a position of an ideal point for a user that wants 
all criteria of maximal benefit. This is a clear multicriterial situation, and we use our 
learning of aggregation function (to have an FLN-class preference model), see [11]. 
Many architectures, backbones, and other hyperparameters allow us to move almost 
continuously along with coordinates within a reasonable range. Trained preference 
models can then find an optimum in the area.  

Our next plans are devoted to more general specifications of customer user 
requirements in natural language. Using our NLP techniques (see [4]), we can parse 
sentences into dependency trees, and after automated annotation, we can learn, e.g., a 
new domain of interest, which can be an entry into web search. In our example, these 
Datalog rules are pretty simple. In more complicated domains, this learning can be more 
involved.  Communication is based on semantic models on both sides. Figure 16 shows 
an application diagram for data acquisition and subsequent knowledge extraction. 

                                                           
12 https://protegewiki.stanford.edu/wiki/OWL2UML 

Figure 15. Different optimization strategies 
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Figure 16. Data collection on the left; Knowledge extraction on the right 

 
The extracted data knowledge is 
possible to transfer into any 
inventory management system 
negotiated by ontologies and 
contribute to the decision process. 
Inventory management modules 
worldwide provide processes of 
maintaining the appropriate level of 
stock in a warehouse. Inventory 
management activities involve 
identifying inventory requirements, 
setting targets, providing 
replenishment techniques and 
options, monitoring storage item 
usages, reconciling the inventory 
balances, and reporting inventory 
status. Integrating inventory 
management modules with other 
ERP modules (sales, purchase, and 
finance modules) allows ERP 
systems to generate vigilant 
executive-level reports. 

One of the most crucial parts of 
collecting inventory data 
information nowadays is obtaining 
and processing vivid stock data. 
Real-time data provides unique 
opportunities to increase the 

capability of production efficiency in manufacturing environments. Real-time data 
collection is on the rise in every industry using very advanced approaches to data 

Figure 17. Example of integration with any general inventory 
management module (illustrated snapshot) 
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collection - machine learning (ML), artificial intelligence (AI), deep learning (DL), 
unmanned aerial vehicle (UAV), and many more. 

Using these advanced technologies, we can develop faster and reasonably precise 
solutions to obtain warehouse wood mass in real-time. Every warehouse dealing with 
wood mass has procedures (advanced procedures) on measuring volume wood mass in 
stock. Most of the time, it is based on volume estimation by experienced workers 
checking the stock regularly. 

Our approach based on using drones to monitor and execute volume estimation can 
provide data knowledge to transfer to any inventory management system with an 
ontology assistant's help. Of course, several restrictions and rules must be applied to map 
the local domain model and data. However, such a knowledge management ontology 
tool can smartly integrate the resources into a coherent corpus of interrelated information 
as an inventory management data addition. Figure 17 shows a  brief example of such a 
model.  

Ontologies offer an alternative way to cope with heterogeneous representations of 
customer internal inventory management models. The domain model implicit in an 
ontology can be considered a unifying structure for giving information a common 
representation and semantics. The idea is that collected and calculated data can 
transparently transform from the UAV data processing model by introducing the 
knowledge transfer ontology-based assistant. 

8. Related work 

There are many commercial products and many more UAV aerial image processing 
applications: [17], [5], and, e.g., use of GNSS, ArcGIS reported by [13], to mention a 
few. [13] noticed that ArcGIS was 12-20 times faster than the use of GNSS, with 
comparable precision. On the other side, we can see that their camera and imaging gave 
a smaller density of points than ours. The main difference between our method and that 
of [13] is the increased precision of measurements achieved by a camera with higher 
resolution and a new UAV hardware generation. Secondary differences are twofold:  A) 
we used the precise targeting of space using GCP, the reality against the virtual model, 
which created an even more accurate digital projection of the terrain. B) We adapted the 
data processing process in the Pix4D process settings, intending to achieve maximum 
accuracy. 

Wood or forest-related studies, where objects may be under treetops, often use 
geographic or geological tools (see, e.g. [3]) to calculate accurate volumes using Lidar 
data. 

Great motivation for us was papers [22] and [7]. Further ideas from [14] and [18] 
were also very inspiring. A big help was a lot of public domain software – detailed 
references are in footnotes on the appropriate place in this paper. 

There is yet a broader context of our work, namely integrating neural (subsymbolic) 
and symbolic AI, which can be considered as a fifth dimension (added to 3D + time) as 
used in [10] and [19]. While machine learning has advanced thanks to deep neural 
networks rapidly, the trial and error approach it uses is similar to the way humans learn. 
It is sometimes failing due to the lack of data or context.  However, humans developed 
language and other systems that make it possible to pass on knowledge directly to others 
who integrate that into their knowledge. [8] looks at the rules which enable knowledge 
transfer to work best in AI and integrate them with existing machine learning approaches. 
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[9] aims to bridge between the two paradigms. Authors discuss neural-symbolic 
integration in relation to the Semantic Web field, focusing on promises and possible 
benefits for both, and report on some current research on the topic. In [20], the authors 
address the contemporary problem of learning neural networks from relational data and 
knowledge representations. As they note: while virtually all standard models are limited 
to data in the form of fixed-size tensors, the relational data are omnipresent in the 
interlinked structures of the Internet and relational databases. Likewise, background 
knowledge in the form of relational logic rules or rich graph-based structures is often 
available in many domains, yet impossible or very difficult to exploit with the standard 
deep learning models.   

In the case of object detection, the knowledge can be integrated after neural learning 
using knowledge about object classes, which are usually expressed by nouns.  

The particular added value of [10] and [19] is the highly elaborated user interface, 
which increases intuitiveness. 

In our approach on the symbolic AI side, we were motivated by [16],  [15],  [1], [6], 
and our former work, e.g. [4] and [21]. We used our [11] approach to fuzzy multicriterial 
systems based on the Fagin-Lotem-Naor FLN class of models. In one direction, we learn 
the preference model; in the opposite direction, we use the trained model to send users 
useful information. 

Connections to the automotive industry are our long-term interest.  In the paper [12], 
the authors describe a questionnaire for Spain's industry and its conclusions. Maybe we 
could go that way as well. 

9. Conclusions and future work 

Our long-term interest in studying possibilities and ways to increase automation, 
efficiency, and digitization of industrial processes using autonomously controlled UAV 
means interconnected with managerial decision support systems (especially in the 
automotive industry). In this paper, we took the first step to master the necessary methods 
in a much simpler domain. We consider two-way communication of knowledge and 
requirements between our system and an industry managerial system.   

Here we presented our results in the secondary wood processing industry. First, we 
presented a deployed solution for calculating woodpiles volume from our UAV flight 
images during a time frame of 9 months. Processing is based on commercial 
photogrammetry software with some manual human intervention necessary. Second, we 
developed alternative automated solutions based on deep neural network learning and 
experimented with several deep neural network architectures, several backbone variants, 
and hyperparameters on real-world data. 

Future work considers the use case extensions, e.g., concerning wood quality, 
monitoring the whole process from the forest via sawmills, transportation, various 
warehouses, and a more significant number of users. 

In future work (hopefully in the final version after the conference), we would like to 
extend our experiments by studying the influence of loss function, training set, learning 
rate, learning scheduler, and regularization on final results.  
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